Software Defined Wireless Networks Considering QoS

Authors

  • Dainier González Romero Universidad Nacional del Sur. Departmento de Ingeniería Eléctrica y Computadoras; Argentina. Author

DOI:

https://doi.org/10.59471/raia2025228

Keywords:

Software-Defined Wireless Networks, IoT Systems Quality of Service, Communication Support, Management of Message Traffic

Abstract

Several IoT systems demand real-time communication, introducing timing constraints on data transmission and stressing the network message propagation. Many of these systems should address these communication requirements, considering the use of wireless networks, which still represents an open issue. To address this communication scenario, it is crucial to employ dynamic configuration strategies that can swiftly adapt the network behavior, ensuring stability and preventing failures under certain operational conditions. Therefore, to rely on mechanisms to implement software-defined networks (SDN), considering wireless real-time communication, is necessary to support these applications. This paper builds on the author’s previous work and shows how to implement software-defined networks that dynamically accommodate the real-time traffic requirements in a wireless network. The network model was implemented and evaluated using the NS-3 simulator. The experimental results demonstrate that incorporating SDN policies into wireless networks enhances the predictability of these systems. The implemented NS-3 libraries were made public and available for researchers and developers. They can utilize these libraries to model and evaluate specific software-defined wireless networks.

Downloads

Download data is not yet available.

References

R. M. Santos, J. Santos, J. D. Orozco, A least upper bound on the fault tolerance of real-time systems, Journal of Systems and Software 78 (2005) 47–55.

ISO, 11898-1:2024; Road vehicles—Controller area network (CAN)—Part 1: Data link layer and physical coding sublayer, Standard, International Organization for Standardization, Geneva, Switzerland, 2024.

IEC, 61158-1:2023; Industrial communication networks—Fieldbus specifications—Part 1: Overview

and guidance for the IEC 61158 and IEC61784 series, Standard, International Electrotechnical

Commission, Geneva, Switzerland, 2023.

C. Xu, Resource optimization algorithm for 5g core network integrating nfv and sdn technologies,

International Journal of Intelligent Networks (2025).

A. Rahman, A. Wadud, J. Islam, D. Kundu, T. Bhuiyan, G. Muhammad, Z. Ali, Internet of medical

things and blockchain-enabled patient-centric agent through sdn for remote patient monitoring in

5g network, Scientific Reports 14 (2024).

M. Fraga, M. Micheletto, A. Llinás, R. Santos, P. Zabala, Flow scheduling in data center networks with

time and energy constraints: A software- defined network approach, Future Internet 14 (2022).

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J.

Turner, Openflow: enabling innovation in campus networks, SIGCOMM Comput. Commun. Rev.

38 (2008) 69–74.

R. Shakir, A. Shaikh, P. Borman, M. Hines, C. Lebsack, C. Morrow, gRPC Network Management

Interface (gNMI), Internet- Draft draft-openconfig-rtgwg-gnmi-spec-01, Internet Engineering Task

Force, 2018. URL: https://datatracker.ietf.org/doc/ draft-openconfig-rtgwg-gnmi-spec/01/, work in

Progress.

B. Pfaff, B. Davie, The Open vSwitch Database Management Protocol, RFC 7047, 2013. URL: https://

www.rfc-editor.org/info/rfc7047. doi:10.17487/RFC7047.

K. Watsen, NETCONF Client and Server Models, Internet-Draft draft-ietf-netconf-netconf-client

server-37, Internet Engineering Task Force, 2024. URL: https://datatracker.ietf.org/doc/draft-ietf

netconf-netconf-client-server/37/, work in Progress.

S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, Z. Zhu, Protocol oblivious forwarding (pof): Software

defined networking with enhanced programmability, IEEE Network 31 (2017) 58–66.

A. a. M. A. a. Alnaser, S. S. Saloum, A. A. Sharadqh, H. Hatamleh, Optimizing multi-tier scheduling

and secure routing in edge-assisted software-defined wireless sensor network environment using

moving target defense and ai techniques, Future Internet 16 (2024) 386.

D. Z. Al-Hamid, P. A. Karegar, P. H. J. Chong, A novel sdwsn-based testbed for iot smart applications,

Future Internet 15 (2023) 291.

B. Alzahrani, N. Fotiou, Securing sdn-based iot group communication, Future Internet 13 (2021) 207.

IEEE, IEEE Standard for Information Technology–Telecommunications and Information Exchange

between Systems - Local and Metropolitan Area Networks–Specific Requirements - Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Technical

Report, Institute of Electrical and Electronics Engineers, 2021. URL: https://doi.org/10.1109/

IEEESTD.2021.9363693. doi:10.1109/IEEESTD.2021.9363693.

A. Llinas, M. Micheletto, R. Santos, S. Ochoa, Software defined wireless networks with real-time

constraints, in: Proceedings of the 12th Latin- American Symposium on Dependable and Secure

Computing, LADC ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 226

229. URL: https://doi.org/10.1145/3615366.3625076. doi:10.1145/3615366.3625076.

NS-3 Project, NS-3: A Discrete-Event Network Simulator, 2025. URL: https://www.nsnam.org/,

accessed: 2025-04-04.

D. González Romero, PoFi-SDN-WiFi: Simulation of a Cognitive Access Point with SDN and QoS,

2025. URL: https://github.com/dainiergonzalezromero/WiFi-QoS-NS3.git, https://github.com/

dainiergonzalezromero/WiFi-QoS-NS3.git.

L. Systems, White Paper: Wi-Fi operation models, Technical Report White Paper WLAN-Management,

LANCOM Systems GmbH, Ade- nauerstr. 20/B2, 52146 Wuerselen, Germany, 2018. URL:

https://www.lancom-systems.fr/fileadmin/download/documentation/Whitepaper/WP_WLAN

Management_EN.pdf, accessed: September 2025.

S. Rojanala, Introductory overview of Wi-Fi, WLAN Architecture, Switch, Router, Gateway, Subnet,

Firewall & DMZ, and their role in the world of Enterprise Wi-Fi, Technical Report CWNP White

Paper, CWNP CWNE Candidate White Paper Series, 2022. URL: https://www.cwnp.com/uploads/

introductory-overview-of-wi-fi-wlan-architecture-switch-router-gateway-subnet-firewall-&-dmz

and-their-role-in-the-world-of-enterprise-wi-fi.pdf, accessed: September 2025.

I.

Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE

Communications Magazine 40 (2002) 102–114.

T. Luo, H.-P. Tan, T. Q. S. Quek, Sensor openflow: Enabling software-defined wireless sensor

networks, IEEE Communications Letters 16 (2012).

M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, Ætherflow: Principled wireless support in sdn, in:

2015 IEEE 23rd International Conference on Network Protocols (ICNP), 2015, pp. 432–437. URL:

https://arxiv.org/abs/1509.04745. doi:10.1109/ICNP.2015.9. arXiv:1509.04745.

Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, Wnos: Enabling principled software-defined wireless

networking, IEEE/ACM Trans. Netw. 29 (2021) 1391–1407.

Z. Shi, Y. Tian, X. Wang, J. Pan, X. Zhang, Po-fi: Facilitating innovations on wifi networks with an sdn

approach, Computer Networks 187 (2021)107781.

T. Theodorou, L. Mamatas, Denis-sdn: Software-defined network slicing solution for dense and ultra

dense iot networks, 2023. URL: https://arxiv.org/abs/2312.13662. arXiv:2312.13662.

L. Galluccio, S. Milardo, G. Morabito, S. Palazzo, Sdn-wise: Design, prototyping and experimentation

of a stateful sdn solution for wireless sensor networks, in: 2015 IEEE Conference on Computer

Communications, 2015, pp. 513–521. doi:10.1109/INFOCOM.2015.7218418.

R. C. A. Alves, D. A. G. d. Oliveira, G. A. Núñez Segura, C. B. Margi, It-sdn: Improved architecture for

sdwsn, in: Proceedings of the XXXV Brazilian Symposium on Computer Networks and Distributed

Systems, Sociedade Brasileira de Computação, Belem, Brazil, 2017, pp. 15–19.

B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in: Proceedings of the First

Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, Association for Computing Machinery, New York, NY, USA, 2012, p. 7–12.

URL: https://doi.org/10.1145/ 2342441.2342444. doi:10.1145/2342441.2342444.

A. Mudvari, L. Tassiulas, Joint sdn synchronization and controller placement in wireless networks

using deep reinforcement learning, in: NOMS 2024-2024 IEEE Network Operations and

Management Symposium, 2024, pp. 1–9. URL: https://arxiv.org/abs/2311.05582. doi:10.1109/

NOMS59830.2024.10575746.

R. W. Coêlho, R. A. Silva, L. A. F. Martimiano, E. J. Leonardo, Iot and 5g networks: A discussion of

sdn, nfv and information security, Journal of the Brazilian Computer Society 30 (2024) 212–227.

D. Yang, W.-T. Tsai, Sdn-based congestion control and bandwidth allocation scheme in 5g networks,

Sensors 24 (2024) 749.

I. Ellawindy, S. Shah Heydari, Crowdsourcing framework for qoe-aware sd-wan, Future Internet 13

(2021) 209

Downloads

Published

2025-12-29

How to Cite

1.
González Romero D. Software Defined Wireless Networks Considering QoS. Revista Abierta de Informática Aplicada [Internet]. 2025 Dec. 29 [cited 2026 Jan. 14];9(1):78-101. Available from: https://raia.revistasuai.ar/index.php/raia/article/view/228