Software Defined Wireless Networks Considering QoS
DOI:
https://doi.org/10.59471/raia2025228Keywords:
Software-Defined Wireless Networks, IoT Systems Quality of Service, Communication Support, Management of Message TrafficAbstract
Several IoT systems demand real-time communication, introducing timing constraints on data transmission and stressing the network message propagation. Many of these systems should address these communication requirements, considering the use of wireless networks, which still represents an open issue. To address this communication scenario, it is crucial to employ dynamic configuration strategies that can swiftly adapt the network behavior, ensuring stability and preventing failures under certain operational conditions. Therefore, to rely on mechanisms to implement software-defined networks (SDN), considering wireless real-time communication, is necessary to support these applications. This paper builds on the author’s previous work and shows how to implement software-defined networks that dynamically accommodate the real-time traffic requirements in a wireless network. The network model was implemented and evaluated using the NS-3 simulator. The experimental results demonstrate that incorporating SDN policies into wireless networks enhances the predictability of these systems. The implemented NS-3 libraries were made public and available for researchers and developers. They can utilize these libraries to model and evaluate specific software-defined wireless networks.
Downloads
References
R. M. Santos, J. Santos, J. D. Orozco, A least upper bound on the fault tolerance of real-time systems, Journal of Systems and Software 78 (2005) 47–55.
ISO, 11898-1:2024; Road vehicles—Controller area network (CAN)—Part 1: Data link layer and physical coding sublayer, Standard, International Organization for Standardization, Geneva, Switzerland, 2024.
IEC, 61158-1:2023; Industrial communication networks—Fieldbus specifications—Part 1: Overview
and guidance for the IEC 61158 and IEC61784 series, Standard, International Electrotechnical
Commission, Geneva, Switzerland, 2023.
C. Xu, Resource optimization algorithm for 5g core network integrating nfv and sdn technologies,
International Journal of Intelligent Networks (2025).
A. Rahman, A. Wadud, J. Islam, D. Kundu, T. Bhuiyan, G. Muhammad, Z. Ali, Internet of medical
things and blockchain-enabled patient-centric agent through sdn for remote patient monitoring in
5g network, Scientific Reports 14 (2024).
M. Fraga, M. Micheletto, A. Llinás, R. Santos, P. Zabala, Flow scheduling in data center networks with
time and energy constraints: A software- defined network approach, Future Internet 14 (2022).
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J.
Turner, Openflow: enabling innovation in campus networks, SIGCOMM Comput. Commun. Rev.
38 (2008) 69–74.
R. Shakir, A. Shaikh, P. Borman, M. Hines, C. Lebsack, C. Morrow, gRPC Network Management
Interface (gNMI), Internet- Draft draft-openconfig-rtgwg-gnmi-spec-01, Internet Engineering Task
Force, 2018. URL: https://datatracker.ietf.org/doc/ draft-openconfig-rtgwg-gnmi-spec/01/, work in
Progress.
B. Pfaff, B. Davie, The Open vSwitch Database Management Protocol, RFC 7047, 2013. URL: https://
www.rfc-editor.org/info/rfc7047. doi:10.17487/RFC7047.
K. Watsen, NETCONF Client and Server Models, Internet-Draft draft-ietf-netconf-netconf-client
server-37, Internet Engineering Task Force, 2024. URL: https://datatracker.ietf.org/doc/draft-ietf
netconf-netconf-client-server/37/, work in Progress.
S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, Z. Zhu, Protocol oblivious forwarding (pof): Software
defined networking with enhanced programmability, IEEE Network 31 (2017) 58–66.
A. a. M. A. a. Alnaser, S. S. Saloum, A. A. Sharadqh, H. Hatamleh, Optimizing multi-tier scheduling
and secure routing in edge-assisted software-defined wireless sensor network environment using
moving target defense and ai techniques, Future Internet 16 (2024) 386.
D. Z. Al-Hamid, P. A. Karegar, P. H. J. Chong, A novel sdwsn-based testbed for iot smart applications,
Future Internet 15 (2023) 291.
B. Alzahrani, N. Fotiou, Securing sdn-based iot group communication, Future Internet 13 (2021) 207.
IEEE, IEEE Standard for Information Technology–Telecommunications and Information Exchange
between Systems - Local and Metropolitan Area Networks–Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Technical
Report, Institute of Electrical and Electronics Engineers, 2021. URL: https://doi.org/10.1109/
IEEESTD.2021.9363693. doi:10.1109/IEEESTD.2021.9363693.
A. Llinas, M. Micheletto, R. Santos, S. Ochoa, Software defined wireless networks with real-time
constraints, in: Proceedings of the 12th Latin- American Symposium on Dependable and Secure
Computing, LADC ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 226
229. URL: https://doi.org/10.1145/3615366.3625076. doi:10.1145/3615366.3625076.
NS-3 Project, NS-3: A Discrete-Event Network Simulator, 2025. URL: https://www.nsnam.org/,
accessed: 2025-04-04.
D. González Romero, PoFi-SDN-WiFi: Simulation of a Cognitive Access Point with SDN and QoS,
2025. URL: https://github.com/dainiergonzalezromero/WiFi-QoS-NS3.git, https://github.com/
dainiergonzalezromero/WiFi-QoS-NS3.git.
L. Systems, White Paper: Wi-Fi operation models, Technical Report White Paper WLAN-Management,
LANCOM Systems GmbH, Ade- nauerstr. 20/B2, 52146 Wuerselen, Germany, 2018. URL:
https://www.lancom-systems.fr/fileadmin/download/documentation/Whitepaper/WP_WLAN
Management_EN.pdf, accessed: September 2025.
S. Rojanala, Introductory overview of Wi-Fi, WLAN Architecture, Switch, Router, Gateway, Subnet,
Firewall & DMZ, and their role in the world of Enterprise Wi-Fi, Technical Report CWNP White
Paper, CWNP CWNE Candidate White Paper Series, 2022. URL: https://www.cwnp.com/uploads/
introductory-overview-of-wi-fi-wlan-architecture-switch-router-gateway-subnet-firewall-&-dmz
and-their-role-in-the-world-of-enterprise-wi-fi.pdf, accessed: September 2025.
I.
Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE
Communications Magazine 40 (2002) 102–114.
T. Luo, H.-P. Tan, T. Q. S. Quek, Sensor openflow: Enabling software-defined wireless sensor
networks, IEEE Communications Letters 16 (2012).
M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, Ætherflow: Principled wireless support in sdn, in:
2015 IEEE 23rd International Conference on Network Protocols (ICNP), 2015, pp. 432–437. URL:
https://arxiv.org/abs/1509.04745. doi:10.1109/ICNP.2015.9. arXiv:1509.04745.
Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, Wnos: Enabling principled software-defined wireless
networking, IEEE/ACM Trans. Netw. 29 (2021) 1391–1407.
Z. Shi, Y. Tian, X. Wang, J. Pan, X. Zhang, Po-fi: Facilitating innovations on wifi networks with an sdn
approach, Computer Networks 187 (2021)107781.
T. Theodorou, L. Mamatas, Denis-sdn: Software-defined network slicing solution for dense and ultra
dense iot networks, 2023. URL: https://arxiv.org/abs/2312.13662. arXiv:2312.13662.
L. Galluccio, S. Milardo, G. Morabito, S. Palazzo, Sdn-wise: Design, prototyping and experimentation
of a stateful sdn solution for wireless sensor networks, in: 2015 IEEE Conference on Computer
Communications, 2015, pp. 513–521. doi:10.1109/INFOCOM.2015.7218418.
R. C. A. Alves, D. A. G. d. Oliveira, G. A. Núñez Segura, C. B. Margi, It-sdn: Improved architecture for
sdwsn, in: Proceedings of the XXXV Brazilian Symposium on Computer Networks and Distributed
Systems, Sociedade Brasileira de Computação, Belem, Brazil, 2017, pp. 15–19.
B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in: Proceedings of the First
Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, Association for Computing Machinery, New York, NY, USA, 2012, p. 7–12.
URL: https://doi.org/10.1145/ 2342441.2342444. doi:10.1145/2342441.2342444.
A. Mudvari, L. Tassiulas, Joint sdn synchronization and controller placement in wireless networks
using deep reinforcement learning, in: NOMS 2024-2024 IEEE Network Operations and
Management Symposium, 2024, pp. 1–9. URL: https://arxiv.org/abs/2311.05582. doi:10.1109/
NOMS59830.2024.10575746.
R. W. Coêlho, R. A. Silva, L. A. F. Martimiano, E. J. Leonardo, Iot and 5g networks: A discussion of
sdn, nfv and information security, Journal of the Brazilian Computer Society 30 (2024) 212–227.
D. Yang, W.-T. Tsai, Sdn-based congestion control and bandwidth allocation scheme in 5g networks,
Sensors 24 (2024) 749.
I. Ellawindy, S. Shah Heydari, Crowdsourcing framework for qoe-aware sd-wan, Future Internet 13
(2021) 209
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.