Redes inalámbricas definidas por software que consideran la calidad del servicio (QoS)
DOI:
https://doi.org/10.59471/raia2025228Palabras clave:
Redes inalámbricas definidas por software, calidad de servicio en sistemas IoT, soporte de comunicación, gestión del tráfico de mensajesResumen
Varios sistemas IoT demandan comunicación en tiempo real, lo que introduce restricciones temporales en la transmisión de datos y ejerce presión sobre la propagación de los mensajes en la red. Muchos de estos sistemas deben abordar estos requerimientos de comunicación considerando el uso de redes inalámbricas, lo que aún representa un problema abierto. Para afrontar este escenario de comunicación, es fundamental emplear estrategias de configuración dinámica que puedan adaptarse rápidamente al comportamiento de la red, garantizando la estabilidad y previniendo fallas bajo determinadas condiciones operativas. Por lo tanto, resulta necesario recurrir a mecanismos para implementar redes definidas por software (SDN), considerando la comunicación inalámbrica en tiempo real, a fin de dar soporte a estas aplicaciones. Este trabajo se basa en investigaciones previas de los autores y muestra cómo implementar redes definidas por software que se adapten dinámicamente a los requerimientos de tráfico en tiempo real en una red inalámbrica. El modelo de red fue implementado y evaluado utilizando el simulador NS-3. Los resultados experimentales demuestran que la incorporación de políticas SDN en redes inalámbricas mejora la predictibilidad de estos sistemas. Las bibliotecas implementadas en NS-3 fueron publicadas y puestas a disposición de investigadores y desarrolladores, quienes pueden utilizarlas para modelar y evaluar redes inalámbricas definidas por software específicas.
Descargas
Referencias
R. M. Santos, J. Santos, J. D. Orozco, A least upper bound on the fault tolerance of real-time systems, Journal of Systems and Software 78 (2005) 47–55.
ISO, 11898-1:2024; Road vehicles—Controller area network (CAN)—Part 1: Data link layer and physical coding sublayer, Standard, International Organization for Standardization, Geneva, Switzerland, 2024.
IEC, 61158-1:2023; Industrial communication networks—Fieldbus specifications—Part 1: Overview
and guidance for the IEC 61158 and IEC61784 series, Standard, International Electrotechnical
Commission, Geneva, Switzerland, 2023.
C. Xu, Resource optimization algorithm for 5g core network integrating nfv and sdn technologies,
International Journal of Intelligent Networks (2025).
A. Rahman, A. Wadud, J. Islam, D. Kundu, T. Bhuiyan, G. Muhammad, Z. Ali, Internet of medical
things and blockchain-enabled patient-centric agent through sdn for remote patient monitoring in
5g network, Scientific Reports 14 (2024).
M. Fraga, M. Micheletto, A. Llinás, R. Santos, P. Zabala, Flow scheduling in data center networks with
time and energy constraints: A software- defined network approach, Future Internet 14 (2022).
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J.
Turner, Openflow: enabling innovation in campus networks, SIGCOMM Comput. Commun. Rev.
38 (2008) 69–74.
R. Shakir, A. Shaikh, P. Borman, M. Hines, C. Lebsack, C. Morrow, gRPC Network Management
Interface (gNMI), Internet- Draft draft-openconfig-rtgwg-gnmi-spec-01, Internet Engineering Task
Force, 2018. URL: https://datatracker.ietf.org/doc/ draft-openconfig-rtgwg-gnmi-spec/01/, work in
Progress.
B. Pfaff, B. Davie, The Open vSwitch Database Management Protocol, RFC 7047, 2013. URL: https://
www.rfc-editor.org/info/rfc7047. doi:10.17487/RFC7047.
K. Watsen, NETCONF Client and Server Models, Internet-Draft draft-ietf-netconf-netconf-client
server-37, Internet Engineering Task Force, 2024. URL: https://datatracker.ietf.org/doc/draft-ietf
netconf-netconf-client-server/37/, work in Progress.
S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, Z. Zhu, Protocol oblivious forwarding (pof): Software
defined networking with enhanced programmability, IEEE Network 31 (2017) 58–66.
A. a. M. A. a. Alnaser, S. S. Saloum, A. A. Sharadqh, H. Hatamleh, Optimizing multi-tier scheduling
and secure routing in edge-assisted software-defined wireless sensor network environment using
moving target defense and ai techniques, Future Internet 16 (2024) 386.
D. Z. Al-Hamid, P. A. Karegar, P. H. J. Chong, A novel sdwsn-based testbed for iot smart applications,
Future Internet 15 (2023) 291.
B. Alzahrani, N. Fotiou, Securing sdn-based iot group communication, Future Internet 13 (2021) 207.
IEEE, IEEE Standard for Information Technology–Telecommunications and Information Exchange
between Systems - Local and Metropolitan Area Networks–Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Technical
Report, Institute of Electrical and Electronics Engineers, 2021. URL: https://doi.org/10.1109/
IEEESTD.2021.9363693. doi:10.1109/IEEESTD.2021.9363693.
A. Llinas, M. Micheletto, R. Santos, S. Ochoa, Software defined wireless networks with real-time
constraints, in: Proceedings of the 12th Latin- American Symposium on Dependable and Secure
Computing, LADC ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 226
229. URL: https://doi.org/10.1145/3615366.3625076. doi:10.1145/3615366.3625076.
NS-3 Project, NS-3: A Discrete-Event Network Simulator, 2025. URL: https://www.nsnam.org/,
accessed: 2025-04-04.
D. González Romero, PoFi-SDN-WiFi: Simulation of a Cognitive Access Point with SDN and QoS,
2025. URL: https://github.com/dainiergonzalezromero/WiFi-QoS-NS3.git, https://github.com/
dainiergonzalezromero/WiFi-QoS-NS3.git.
L. Systems, White Paper: Wi-Fi operation models, Technical Report White Paper WLAN-Management,
LANCOM Systems GmbH, Ade- nauerstr. 20/B2, 52146 Wuerselen, Germany, 2018. URL:
https://www.lancom-systems.fr/fileadmin/download/documentation/Whitepaper/WP_WLAN
Management_EN.pdf, accessed: September 2025.
S. Rojanala, Introductory overview of Wi-Fi, WLAN Architecture, Switch, Router, Gateway, Subnet,
Firewall & DMZ, and their role in the world of Enterprise Wi-Fi, Technical Report CWNP White
Paper, CWNP CWNE Candidate White Paper Series, 2022. URL: https://www.cwnp.com/uploads/
introductory-overview-of-wi-fi-wlan-architecture-switch-router-gateway-subnet-firewall-&-dmz
and-their-role-in-the-world-of-enterprise-wi-fi.pdf, accessed: September 2025.
I.
Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE
Communications Magazine 40 (2002) 102–114.
T. Luo, H.-P. Tan, T. Q. S. Quek, Sensor openflow: Enabling software-defined wireless sensor
networks, IEEE Communications Letters 16 (2012).
M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, Ætherflow: Principled wireless support in sdn, in:
2015 IEEE 23rd International Conference on Network Protocols (ICNP), 2015, pp. 432–437. URL:
https://arxiv.org/abs/1509.04745. doi:10.1109/ICNP.2015.9. arXiv:1509.04745.
Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, Wnos: Enabling principled software-defined wireless
networking, IEEE/ACM Trans. Netw. 29 (2021) 1391–1407.
Z. Shi, Y. Tian, X. Wang, J. Pan, X. Zhang, Po-fi: Facilitating innovations on wifi networks with an sdn
approach, Computer Networks 187 (2021)107781.
T. Theodorou, L. Mamatas, Denis-sdn: Software-defined network slicing solution for dense and ultra
dense iot networks, 2023. URL: https://arxiv.org/abs/2312.13662. arXiv:2312.13662.
L. Galluccio, S. Milardo, G. Morabito, S. Palazzo, Sdn-wise: Design, prototyping and experimentation
of a stateful sdn solution for wireless sensor networks, in: 2015 IEEE Conference on Computer
Communications, 2015, pp. 513–521. doi:10.1109/INFOCOM.2015.7218418.
R. C. A. Alves, D. A. G. d. Oliveira, G. A. Núñez Segura, C. B. Margi, It-sdn: Improved architecture for
sdwsn, in: Proceedings of the XXXV Brazilian Symposium on Computer Networks and Distributed
Systems, Sociedade Brasileira de Computação, Belem, Brazil, 2017, pp. 15–19.
B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in: Proceedings of the First
Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, Association for Computing Machinery, New York, NY, USA, 2012, p. 7–12.
URL: https://doi.org/10.1145/ 2342441.2342444. doi:10.1145/2342441.2342444.
A. Mudvari, L. Tassiulas, Joint sdn synchronization and controller placement in wireless networks
using deep reinforcement learning, in: NOMS 2024-2024 IEEE Network Operations and
Management Symposium, 2024, pp. 1–9. URL: https://arxiv.org/abs/2311.05582. doi:10.1109/
NOMS59830.2024.10575746.
R. W. Coêlho, R. A. Silva, L. A. F. Martimiano, E. J. Leonardo, Iot and 5g networks: A discussion of
sdn, nfv and information security, Journal of the Brazilian Computer Society 30 (2024) 212–227.
D. Yang, W.-T. Tsai, Sdn-based congestion control and bandwidth allocation scheme in 5g networks,
Sensors 24 (2024) 749.
I. Ellawindy, S. Shah Heydari, Crowdsourcing framework for qoe-aware sd-wan, Future Internet 13
(2021) 209
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.