Explainability in Quantum Search Algorithms on Hypercube with Shapley Values

Authors

  • María Cecilia Pezzini Universidad Nacional de La Plata; Argentina. Author
  • Claudia Pons Universidad Nacional de La Plata. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Universidad Abierta Interamericana; Argentina. Author
  • Luis Mariano Bibbó Universidad Nacional de La Plata; Argentina. Author

DOI:

https://doi.org/10.59471/raia2025224

Keywords:

quantum explainability, Shapley values, coined quantum walk, hypercube search, Hamiltonian-based interpretation, cooperative contribution

Abstract

This work explores the explainability of the coined quantum walk search algorithm on the hypercube by incorporating the SMEF-E (Shapley–Matrix Explainability Framework – Energy) methodology. In this approach, cooperative game theory is combined with Hamiltonian-based value functions to attribute, step by step, the energetic and functional impact of the oracle, the Grover coin, and the flip-flop shift. The resulting Shapley value decomposition offers an interpretable quantification of operator influence throughout the amplification process, revealing how constructive interference emerges and is redistributed as the algorithm approaches its optimal success probability. The experimental analysis confirms theoretical predictions while providing transparent insights into the mechanisms driving quantum advantage in spatial search.

Downloads

Download data is not yet available.

References

Burge, D., & et al. (2024). Explainability for Quantum Circuits using Functional Attribution. npj Quantum Information.

Childs, A. M., & Goldstone, J. (2004). Spatial search by quantum walk. Physical Review A, 70(2), 022314. https://doi.org/10.1103/PhysRevA.70.022314

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC ’96), 212-219. https://doi.org/10.1145/237814.237866

Nielsen, M. A., & Chuang, I. L. (2011). Quantum Computation and Quantum Information: 10th Anniversary Edition (10th anniversary ed.). Cambridge University Press.

Portugal, R. (2018). Quantum Walks and Search Algorithms. Springer. https://doi.org/10.1007/978-3- 319-97813-8

Shapley, L. S. (1953). A value for n-person games. En H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the Theory of Games (pp. 307-317, Vol. 2). Princeton University Press.

Shenvi, N., Kempe, J., & Whaley, K. B. (2003). Quantum random-walk search algorithm. Physical Review A, 67(5), 052307. https://doi.org/10.1103/PhysRevA.67.052307

Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory, 14(2), 65-72. https://doi.org/10.1007/BF01770228

Downloads

Published

2025-12-29

How to Cite

1.
Pezzini MC, Pons C, Bibbó LM. Explainability in Quantum Search Algorithms on Hypercube with Shapley Values. Revista Abierta de Informática Aplicada [Internet]. 2025 Dec. 29 [cited 2026 Jan. 14];9(1):169-92. Available from: https://raia.revistasuai.ar/index.php/raia/article/view/224