FSAL: A Tailor-made Financial Sentiment Lexicon in Spanish for the Argentinian Markets (BYMA)

Authors

  • Juan Pablo Braña Centro de Altos Estudios en Tecnología Informática (CAETI) Author
  • Alejandra M. J. Litterio Centro de Altos Estudios en Tecnología Informática (CAETI) Author
  • Alejandro Fernández Centro de Altos Estudios en Tecnología Informática (CAETI) Author

DOI:

https://doi.org/10.59471/raia201843

Keywords:

SENTIMENT ANALYSIS, FINANCIAL LEXICON, ALGORITHMIC TRADING, MACHINE LEARNING

Abstract

During the last decade studies have shown that lexicon-based Sentiment Analysis of tweets combined with Machine Learning techniques can be used to enhance Algorithmic Trading strategies. The aim of the present work is to show how a specific domain lexicon in finance for the Argentinian Markets (FSAL) provides a better outcome than a generic lexicon (SDAL). First, we introduce a finance tailor-made lexicon. Secondly, we experimentally show that our lexicon outperforms a general purpose one on a corpus of tweets previously classified collaboratively by specialists in finance. Then, we compare the lexicons applying three different Machine Learning algorithms. Finally, we introduce some preliminary results and conclusions

Downloads

Published

2018-05-29

How to Cite

1.
Braña JP, Litterio AMJ, Fernández A. FSAL: A Tailor-made Financial Sentiment Lexicon in Spanish for the Argentinian Markets (BYMA). Revista Abierta de Informática Aplicada [Internet]. 2018 May 29 [cited 2025 Mar. 10];2(1):5-22. Available from: https://raia.revistasuai.ar/index.php/raia/article/view/43