Learning Outcome Generation using LLM
Design and Validation
DOI:
https://doi.org/10.59471/raia2025217Keywords:
educational automation, learning outcome generation, large language models, retrieval-augmented generationAbstract
This article explores the use of artificial intelligence to automate the generation of Learning Outcomes (LO) in higher education contexts. The proposal combines a Large Language Model (LLM) with a Retrieval-Augmented Generation (RAG) architecture, aiming to improve the accuracy, coherence, and pedagogical relevance of the generated texts. To achieve this, disciplinary document corpus and a database of LO previously validated by the educational community were integrated and used as contextual sources during the automatic generation process. The proposed architecture was implemented, and various experimental scenarios were analyzed using a single course, modifying input configurations such as prompt structure and model temperature. The results show that the system is capable of generating structurally correct LO, aligned with curricular parameters. As future work, the incorporation of automated mechanisms to assess pedagogical quality is proposed, along with extending the model to support the generation of other relevant educational artifacts
Downloads
References
Benites, F., Benites, A. D., & Anson, C. M. (2023). Automated text generation and summarization for academic writing. In Digital Writing Technologies in Higher Education: Theory, Research, and Practice (pp. 279–301). Springer International Publishing. https://doi.org/10.1007/978-3-031-36033-6_18
Biggs, J. (2003). Teaching for Quality Learning at University.
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Handbook I: cognitive domain. (New York: David McKay, Ed.).
Chroma. (2023). Chroma is the open-source search and retrieval database for AI applications. Https://Www.Trychroma.Com/.
Chu, Z., Wang, S., Xie, J., Zhu, T., Yan, Y., Ye, J., Zhong, A., Hu, X., Liang, J., Yu, P. S., & Wen, Q. (2025). LLM Agents for Education: Advances and Applications.
Corchado, J. M., Sebastian López, F., Núñez, J. M. V., Raul Garcia, S., & Chamoso, P. (2023). Generative Artificial Intelligence: Fundamentals. Advances in Distributed Computing and Artificial Intelligence Journal, 12(1). https://doi.org/10.14201/adcaij.31704
Gaete Quezada, R. (2021). Evaluación de resultados de aprendizaje mediante organizadores gráficos y narrativas transmedia. Revista de Estudios y Experiencias En Educación, 20(44), 384–407. https://doi.org/10.21703/0718-5162.v20.n43.2021.022
Jeong, C. (2023). A Study on the Implementation of Generative AI Services Using an Enterprise Data-Based LLM Application Architecture. Advances in Artificial Intelligence and Machine Learning, 03(04), 1588–1618. https://doi.org/10.54364/AAIML.2023.1191
Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y. (2023). ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge. Cureus. https://doi.org/10.7759/cureus.40895
Meta. (2024). Introducing Llama 3.1: Our most capable models to date. Https://Ai.Meta.Com/Blog/Meta-Llama-3-1/.
Min, B., Ross, H., Sulem, E., Veyseh, A. P. Ben, Nguyen, T. H., Sainz, O., Agirre, E., Heintz, I., & Roth, D. (2024). Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Computing Surveys, 56(2), 1–40. https://doi.org/10.1145/3605943
Neil, C. (2024). Marco conceptual para la definición, desarrollo y evaluación de competencias (Fundación Iberoamericana de Estudios Superiores (ed.); 1a ed.). Fundación Iberoamericana de Estudios Superiores.
Neil, C., Battaglia, N., & De Vincenzi, M. (2023). La matriz de competencias como herramienta para orientar la escritura de resultados de aprendizaje. XVIII Congreso Nacional de Tecnología En Educación y Educación En Tecnología-TE&ET 2023.
Pavlyshenko, B. M. (2023). Financial News Analytics Using Fine-Tuned Llama 2 GPT Model.
Posedaru, B.-S., Pantelimon, F.-V., Dulgheru, M.-N., & Georgescu, T.-M. (2024). Artificial Intelligence Text Processing Using Retrieval-Augmented Generation: Applications in Business and Education Fields. Proceedings of the International Conference on Business Excellence, 18(1), 209–222. https://doi.org/10.2478/picbe-2024-0018
Prieto J. (2012). Las competencias en la docencia universitaria. Pearson Educación.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2019). Improving Language Understanding by Generative Pre-Training.
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. In Internet of Things and Cyber-Physical Systems (Vol. 3, pp. 121–154). KeAi Communications Co. https://doi.org/10.1016/j.iotcps.2023.04.003
Yeung, C., Yu, J., Cheung, K. C., Wong, T. W., Chan, C. M., Wong, K. C., & Fujii, K. (2025). A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education.
Zhao W., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Wen, J.-R. (2023). A Survey of Large Language Models.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.