Learning Outcome Generation using LLM

Design and Validation

Authors

  • Nelson Garrido Universidad Abierta Interamericana. Facultad de Tecnología Informática. CAETI, Argentina. Author
  • Carlos Neil Universidad Abierta Interamericana. Facultad de Tecnología Informática. CAETI, Argentina. Author
  • Claudia Pons Universidad Abierta Interamericana. Facultad de Tecnología Informática. CAETI, Argentina. Author

DOI:

https://doi.org/10.59471/raia2025217

Keywords:

educational automation, learning outcome generation, large language models, retrieval-augmented generation

Abstract

This article explores the use of artificial intelligence to automate the generation of Learning Outcomes (LO) in higher education contexts. The proposal combines a Large Language Model (LLM) with a Retrieval-Augmented Generation (RAG) architecture, aiming to improve the accuracy, coherence, and pedagogical relevance of the generated texts. To achieve this, disciplinary document corpus and a database of LO previously validated by the educational community were integrated and used as contextual sources during the automatic generation process. The proposed architecture was implemented, and various experimental scenarios were analyzed using a single course, modifying input configurations such as prompt structure and model temperature. The results show that the system is capable of generating structurally correct LO, aligned with curricular parameters. As future work, the incorporation of automated mechanisms to assess pedagogical quality is proposed, along with extending the model to support the generation of other relevant educational artifacts

Downloads

Download data is not yet available.

Author Biography

  • Nelson Garrido, Universidad Abierta Interamericana. Facultad de Tecnología Informática. CAETI, Argentina.

     

     

References

Benites, F., Benites, A. D., & Anson, C. M. (2023). Automated text generation and summarization for academic writing. In Digital Writing Technologies in Higher Education: Theory, Research, and Practice (pp. 279–301). Springer International Publishing. https://doi.org/10.1007/978-3-031-36033-6_18

Biggs, J. (2003). Teaching for Quality Learning at University.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Handbook I: cognitive domain. (New York: David McKay, Ed.).

Chroma. (2023). Chroma is the open-source search and retrieval database for AI applications. Https://Www.Trychroma.Com/.

Chu, Z., Wang, S., Xie, J., Zhu, T., Yan, Y., Ye, J., Zhong, A., Hu, X., Liang, J., Yu, P. S., & Wen, Q. (2025). LLM Agents for Education: Advances and Applications.

Corchado, J. M., Sebastian López, F., Núñez, J. M. V., Raul Garcia, S., & Chamoso, P. (2023). Generative Artificial Intelligence: Fundamentals. Advances in Distributed Computing and Artificial Intelligence Journal, 12(1). https://doi.org/10.14201/adcaij.31704

Gaete Quezada, R. (2021). Evaluación de resultados de aprendizaje mediante organizadores gráficos y narrativas transmedia. Revista de Estudios y Experiencias En Educación, 20(44), 384–407. https://doi.org/10.21703/0718-5162.v20.n43.2021.022

Jeong, C. (2023). A Study on the Implementation of Generative AI Services Using an Enterprise Data-Based LLM Application Architecture. Advances in Artificial Intelligence and Machine Learning, 03(04), 1588–1618. https://doi.org/10.54364/AAIML.2023.1191

Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y. (2023). ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge. Cureus. https://doi.org/10.7759/cureus.40895

Meta. (2024). Introducing Llama 3.1: Our most capable models to date. Https://Ai.Meta.Com/Blog/Meta-Llama-3-1/.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. Ben, Nguyen, T. H., Sainz, O., Agirre, E., Heintz, I., & Roth, D. (2024). Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Computing Surveys, 56(2), 1–40. https://doi.org/10.1145/3605943

Neil, C. (2024). Marco conceptual para la definición, desarrollo y evaluación de competencias (Fundación Iberoamericana de Estudios Superiores (ed.); 1a ed.). Fundación Iberoamericana de Estudios Superiores.

Neil, C., Battaglia, N., & De Vincenzi, M. (2023). La matriz de competencias como herramienta para orientar la escritura de resultados de aprendizaje. XVIII Congreso Nacional de Tecnología En Educación y Educación En Tecnología-TE&ET 2023.

Pavlyshenko, B. M. (2023). Financial News Analytics Using Fine-Tuned Llama 2 GPT Model.

Posedaru, B.-S., Pantelimon, F.-V., Dulgheru, M.-N., & Georgescu, T.-M. (2024). Artificial Intelligence Text Processing Using Retrieval-Augmented Generation: Applications in Business and Education Fields. Proceedings of the International Conference on Business Excellence, 18(1), 209–222. https://doi.org/10.2478/picbe-2024-0018

Prieto J. (2012). Las competencias en la docencia universitaria. Pearson Educación.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2019). Improving Language Understanding by Generative Pre-Training.

Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. In Internet of Things and Cyber-Physical Systems (Vol. 3, pp. 121–154). KeAi Communications Co. https://doi.org/10.1016/j.iotcps.2023.04.003

Yeung, C., Yu, J., Cheung, K. C., Wong, T. W., Chan, C. M., Wong, K. C., & Fujii, K. (2025). A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education.

Zhao W., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Wen, J.-R. (2023). A Survey of Large Language Models.

Downloads

Published

2025-12-29

How to Cite

1.
Garrido N, Neil C, Pons C. Learning Outcome Generation using LLM: Design and Validation . Revista Abierta de Informática Aplicada [Internet]. 2025 Dec. 29 [cited 2026 Jan. 14];9(1):25-3. Available from: https://raia.revistasuai.ar/index.php/raia/article/view/217