Integration of Artificial Intelligence into Learning Theories and Styles
DOI:
https://doi.org/10.59471/raia2024207Keywords:
personalized education, artificial intelligence, learning theoriesAbstract
This article analyzes the integration of Artificial Intelligence (AI) in education, highlighting its impact on traditional learning theories such as constructivism, cognitivism, behaviorism, and connectivism. AI enriches these theories by providing adaptive tools, intelligent tutoring systems, automated assessments, and global learning networks. These technologies personalize learning, optimize content organization, and foster interdisciplinary collaboration. Constructivism is strengthened by personalized and collaborative environments, while cognitivism leverages predictive analytics to anticipate and address learning difficulties. Behaviorism finds in AI a means to implement positive reinforcement strategies, and connectivism promotes global access to knowledge through intelligent networks. Although these advances positively transform education, ethical challenges such as privacy and equity are highlighted. This study concludes that ethically implemented AI has the potential to revolutionize education for a more inclusive future.
References
Alonso, C., Gallego, D., & Honey, P. (1995). Los estilos de aprendizaje: Procedimientos de diagnóstico y mejora. España.
Battaglia, N., Neil, C., De Vincenzi, M., & Martínez, R. (2016). UAICase: Integración de un entorno académico con una herramienta CASE en una plataforma virtual colaborativa. En XI Congreso de Tecnología en Educación y Educación Virtual. Recuperado de: https://sedici.unlp.edu.ar/handle/10915/53571.
Bernard, J., Chang, T., Popescu, E., & Graf, S. (2017). Learning style identifier: Improving the precision of learning style identification through computational intelligence algorithms. Expert Systems with Applications, 75, 94–108.
Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent technologies for web-based educational systems. International Journal of Artificial Intelligence in Education, 13, 159–172.
Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Learning styles and pedagogy in post-16 learning: A systematic and critical review. London, UK.
Crockett, K., Latham, A., & Whitton, N. (2017). On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees. International Journal of Human- Computer Studies, 97, 98–115.
El-Ghareeb, H. A. (2020). Intelligent and adaptive microservices and neutrosophic-based learning management systems. En F. Smarandache & M. Abdel-Basset (Eds.), Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 63–85). Academic Press.
Jayasingh, B. (2016). A data mining approach to inquiry-based inductive learning practice in engineering education. En 2016 IEEE 6th International Conference on Advanced Computing (IACC) (pp. [incluir número de páginas]). Bhimavaram, India.
Jonassen, D. (1999). Designing constructivist learning environments. University Park, PA.
Lwande, C., Muchemi, L., & Oboko, R. (2021). Identifying learning styles and cognitive traits in a learning management system. Journal of Computer Assisted Learning, 37(5), 1417– 1430.
Maffei, F., Neil, C., & Battaglia, N. (2022). Herramientas para determinar estilos de aprendizaje basadas en Inteligencia artificial. In XVII Congreso de Tecnología en Educación & Educación en Tecnología-TE&ET 2022 (Entre Ríos, 15 y 16 de junio de 2022)
Miller, M., Clerck, J., Endres, W., Roberts, L., Hale, K., & Sorby, S. (2013). Evaluation of computer modules to teach metacognition and motivation strategies in engineering education. Journal of Engineering Education, 102(4), 570–593.
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9(3), 105–119.
Piaget, J. (1967). La psicología de la inteligencia. Barcelona: Ariel.
Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning.
Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.
Tsai, P., & Liao, H. (2021). Students’ progressive behavioral learning patterns in using machine translation systems: A structural equation modeling analysis. System, 101, 102561.
Vygotsky, L. (1978). The interaction between learning and development. En Mind in Society: The Development of Higher Psychological Processes. Development and Learning.
Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Burlington, MA: Morgan Kaufmann.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.