ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: un marco metodolégico para la ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

102

Behavior-Driven Microservice Architecture: un marco
metodoldgico para la identificacion iterativa de
microservicios en proyectos agiles greenfield

Behavior-Driven Microservice Architecture:
A Methodological Framework for Iterative
Microserviceldentification in Agile Greenfield
Projects

Nicolas Battaglia
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

Gustavo Rossi
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. LIFIA, Facultad de
Informatica, Universidad Nacional de La Plata (UNLP), Argentina.

Alejandro Fernandez
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

Daniel Narvaez
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

DOI https://doi.org/10.59471/raia2025227

Enviado: junio 2025. Aceptado: octubre 2025. Publicado: diciembre 2025

Como citar: Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D. (2025). Behavior-Driven Microservice Archi-
tecture: un marco metodoldgico para la identificacion iterativa de microservicios en proyectos agiles greenfield.
Revista Abierta De Informatica Aplicada, 9(1). https://doi.org/10.59471/raia2025227

Resumen

La adopcidn de arquitecturas basadas en microservicios plantea desafios significa-
tivos en la fase de disefio, particularmente en contextos greenfield donde las decisiones
iniciales condicionan la mantenibilidad futura. Aunque existen aportes relevantes desde
Domain-Driven Design (DDD) y Behavior-Driven Development (BDD), persiste una brecha
metodoldgica: los enfoques actuales suelen ser tedricos, carecen de mecanismos explicitos
de trazabilidad entre requisitos funcionales y decisiones arquitecténicas, o se enfocan en
escenarios de reingenieria brownfield. Este trabajo introduce Behavior-Driven Microservice
Architecture (BDMA), un marco metodolégico sistematico, iterativo y reproducible que guia
la identificacion, disefio y evolucion de microservicios en proyectos agiles greenfield. BDMA
integra principios de DDD, técnicas de BDD vy practicas de arquitectura evolutiva para trans-
formar escenarios funciona—les en bounded contexts, contratos de servicio y registros de
decisiones arquitectonicas. Como aporte principal, BDMA ofrece un enfoque practico que

(ec) T

https://doi.org/10.59471/raia2025227
https://doi.org/10.59471/raia2025227

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

asegura alineacioén entre requisitos y arquitectura, fomenta la colaboracién interdisciplinaria
y habilita trazabilidad completa desde los escenarios BDD hasta la implementacion, dem-
ostrada mediante una Architectural Kata ilustrativa.

PALABRAS CLAVES: Microservicios, Arquitecturas de software, Metodos agiles,
Greenfield development.

Abstract

The adoption of microservice-based architectures poses significant challenges in the
design phase, particularly in greenfield contexts where initial decisions condition future
maintainability. Although there are relevant contributions from Domain-Driven Design
(DDD) and Behavior-Driven Development (BDD), a methodological gap remains: current
approaches tend to be theoretical, lack explicit mechanisms for traceability between functional
requirements and architectural decisions, or focus on brownfield reengineering scenarios.
This work introduces Behavior-Driven Microservice Architecture (BDMA), a systematic,
iterative, and reproducible methodological framework that guides the identification, design,
and evolution of microservices in agile greenfield projects. BDMA integrates DDD principles,
BDD techniques, and evolutionary architecture practices to transform functional scenarios
into bounded contexts, service contracts, and architectural decision records. As its main
contribution, BDMA offers a practical approach that ensures alignment between requirements
and architecture, fosters interdisciplinary collaboration, and enables complete traceability from
BDD scenarios to implementation, demonstrated through an illustrative Architectural Kata.

KEYWORDS: Microservices, Software architectures, Agile methods, Greenfield development.

Introduccion

El disefio arquitectonico constituye la fase donde se estructuran las decisiones de mas
alto nivel en el desarrollo de software, determinando la organizacién del sistema y su capa-
cidad de evolucion. En proyectos greenfield, este proceso plantea un desafio fundamental:
la mayoria de las decisiones criticas se toman en etapas tempranas, cuando aun existe un
alto grado de incertidumbre y una carencia de artefactos técnicos preexistentes (Cervantes
& Kazman, 2024). A diferencia de la migracion de sistemas monoliticos, donde el codigo
fuente actua como referencia tangible para la refactorizacion, el desarrollo desde cero exige
derivar la arquitectura directamente de requisitos funcionales que a menudo son ambiguos o
incompletos. Estas decisiones —que incluyen la definicion de limites de servicios, contratos
de integracién y modelos de dominio— suelen ser dificiles de modificar una vez implemen-
tadas, debido a su impacto transversal en la evolucion del sistema (Ford et al., 2022; Woods
et al., 2021). Esta caracteristica convierte a la arquitectura en un conjunto de “decisiones
costosas de cambiar” que condicionan la mantenibilidad y la capacidad de adaptacion futura.

103

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

En los ultimos afios, las arquitecturas basadas en microservicios se han consolidado
como una alternativa predominante al paradigma monolitico, impulsadas por la necesidad
de agilidad, escalabilidad, resiliencia y autonomia de despliegue en entornos basados en
la nube. Su valor radica en dividir el sistema en servicios pequefios y autbnomos, cada uno
con un ciclo de vida independiente (Lewis & Fowler, 2014; Newman, 2021). Sin embargo,
esta flexibilidad trae consigo retos mayores que las metodologias tradicionales no abordan
completamente. La literatura reciente identifica problemas criticos como la correcta identifi-
cacion de limites de servicio que asegure cohesion interna y baja dependencia, la gestion de
la comunicacion entre servicios y el mantenimiento de la consistencia de datos en entornos
distribuidos (Narvaez et al., 2025).

Cuando la delimitacidn de servicios se realiza de forma inadecuada, emergen sintomas
recurrentes de degradacion arquitectonica, conocidos como “bad smells”. Estos incluyen
servicios demasiado granulares, responsabilidades superpuestas, dependencias ciclicas o
la creacién de “servicios dios”que acoplan excesivamente el sistema, comprometiendo la
mantenibilidad y favoreciendo la acumulacion temprana de deuda técnica (Ponce et al., 2022;
Taibi & Lenarduzzi, 2018). Ademas, la descentralizacion de la gestion de datos introduce
complejidades adicionales, como la necesidad de orquestar transacciones distribuidas y
garantizar la consistencia eventual, aspectos que frecuentemente se subestiman en la fase
de disefio inicial provocando fallos de integracion tardios.

La nocion de arquitectura evolutiva enfatiza que, frente a entornos cambiantes, las
arquitecturas deben disefarse para sostener el cambio continuo mediante mecanismos de
validacién automatizados y la documentacion sistematica de decisiones arquitecténicas (Ford
et al., 2022). Esta perspectiva resalta la necesidad de marcos metodoldgicos que no solo
guien el disefio inicial, sino que también acomparien la evolucion. En contextos agiles, donde
los requisitos evolucionan de manera iterativa y los equipos buscan entregar valor de forma
incremental, esta rigidez inicial genera una tension significativa. La literatura muestra que
las practicas tradicionales de estimacioén y disefio en entornos agiles —como story points o
planning poker— fueron concebidas para arquitecturas monoliticas y no se adaptan natural-
mente a las particularidades de sistemas distribuidos, que requieren autonomia de servicios,
comunicacion asincronica y limites semanticos explicitos (Unli et al., 2024).

Diversos enfoques han buscado mitigar este problema desde perspectivas tedricas y
técnicas. El Domain-Driven Design (DDD) ha resaltado la relevancia de los bounded contexts
como unidad para la separacion de responsabilidades e identificacion de microservicios
(Evans, 2004; Vernon, 2016). Sin embargo, estudios empiricos y revisiones sistematicas
recientes evidencian que la aplicacién directa de DDD enfrenta limitaciones practicas, espe-
cialmente la falta de mecanismos prescriptivos para traducir conceptos abstractos en disefios
concretos en contextos agiles (Narvaez et al., 2025; Zhong et al., 2024). Por su parte, el
Behavior-Driven Development (BDD) ha enfatizado el valor de escenarios funcionales expre-
sados en lenguaje ubicuo como medio para alinear negocio y técnica (Evans, 2004; Smart
& Molak, 2023). No obstante, existe una brecha metodoldgica significativa: estos enfoques

104

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

suelen aplicarse de manera aislada, sin articular un proceso integral que permita transformar
sistematicamente requisitos funcionales textuales en decisiones arquitecténicas verificables
y trazables (Rademacher et al., 2017). Aunque herramientas basadas en Inteligencia Artificial
comienzan a emerger para asistir en la descomposicion (Narvaez et al., 2025), estas requie-
ren de un marco metodoldgico subyacente que estructure los artefactos de entrada y salida
para ser efectivas.

En este escenario, proponemos Behavior-Driven Microservice Architecture (BDMA),
un marco metodoldgico que integra principios de DDD y BDD con practicas de arquitectura
evolutiva (Ford et al., 2022; Kopp et al., 2018). BDMA se orienta especificamente a proyectos
greenfield, proporcionando un proceso iterativo, colaborativo y reproducible que acompana
la evolucién funcional sin perder coherencia estructural. Su aporte principal radica en ofrecer
un mecanismo sistematico para transformar escenarios BDD en artefactos arquitectonicos
tangibles —mapas de agrupamiento funcional, bounded contexts explicitos, contratos API
contractfirst y registros de decisiones (ADR)— que sostienen la alineacion continua entre la
visién de negocio y la implementacion técnica.

Las contribuciones de este trabajo son:

* La definicion de un marco metodolégico que integra DDD, BDD vy practicas de
arquitectura evolutiva en un proceso reproducible paso a paso.

» La propuesta de artefactos intermedios formalizados que facilitan la trazabilidad
completa desde el requisito funcional hasta la interfaz del servicio y su validacion
continua.

« La presentacion de un ejemplo ilustrativo y una validacién preliminar que evidencian
la aplicabilidad de BDMA para reducir la incertidumbre en fases tempranas de disefio.

El resto del articulo se estructura de la siguiente manera: La Seccién 2 analiza los traba-
jos relacionados, clasificando los enfoques existentes y destacando la brecha metodolégica.
La Seccion 3 detalla la metodologia de investigacion basada en Design Science Research
(DSR). En la Seccion 4, se presentan los fundamentos tedricos y principios rectores de
BDMA. La Seccion 5 describe en profundidad las cinco fases del marco y sus artefactos. La
Seccioén 6 ilustra la aplicacion del método mediante un caso de estudio de una plataforma
cientifica. La Seccion 7 presenta la validacion empirica y el analisis de resultados. Finalmente,
la Seccién 9 ofrece las conclusiones y lineas de trabajo futuro.

Trabajos Relacionados

La identificacion y disefio de microservicios constituye un problema de optimizacién com-
plejo que ha sido abordado desde multiples perspectivas en la ultima década. La literatura

105

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

actual puede clasificarse en tres corrientes principales: enfoques funcionales basados en
el dominio, estrategias algoritmicas o asistidas por inteligencia artificial, y marcos de gober-
nanza para la arquitectura evolutiva. A pesar de los avances, persiste una fragmentacion
metodoldgica, particularmente en escenarios greenfield, donde la ausencia de cédigo legado
impide el uso de técnicas de refactorizacién tradicionales.

Enfoques de Descomposicion Basados en el Dominio y Heuristicas

En el contexto de la ingenieria de software tradicional, diversos trabajos han buscado
derivar microservicios a partir de descripciones funcionales de alto nivel y modelado del
dominio.

(Josélyne et al., 2018) proponen una particion de microservicios basada en ingenieria
de dominio y lineas de producto. Si bien ofrecen un marco estructurado para gestionar la
variabilidad, su enfoque carece de mecanismos explicitos para la iteracién agil o la validacion
continua de los limites definidos.

La integracién de Domain-Driven Design (DDD) y Behavior-Driven Development (BDD)
ha sido explorada como una via para alinear los requisitos con la arquitectura. (Hippchen et
al., 2017) examinan la relacion tedrica entre DDD y BDD, resaltando su potencial sinérgico,
pero sin formalizar un proceso metodolégico operativo que guie al arquitecto paso a paso.
Por su parte, (Rademacher et al., 2017) introducen perfiles UML para representar bounded
contexts y sus interacciones. Aunque aportan estandarizacion visual y formalizacion, su
propuesta mantiene una orientacion principalmente tedrica y de dificil adopcién en equipos
agiles que priorizan la documentacion ligera.

Mas recientemente, (Zhong et al., 2024) llevaron a cabo una investigacion empirica
extensiva sobre el uso de DDD en la industria. Sus conclusiones revelan que, si bien DDD
es valioso para estructurar el dominio, su aplicacion directa enfrenta tensiones metodolégi-
cas significativas en entornos agiles, donde la falta de guias prescriptivas deriva a menudo
en arquitecturas monoliticas distribuidas. Asimismo, (Cardoso, 2021) propone una guia de
lineamientos heuristicos para proyectos greenfield, reconociendo la especificidad de disefar
desde cero. Sin embargo, al limitarse a principios generales sin artefactos verificables, su
aplicabilidad depende excesivamente de la experiencia tacita del arquitecto.

Enfoques Algoritmicos y Asistidos por Inteligencia Artificial

Con el auge de la inteligencia artificial, han surgido herramientas que automatizan la
descomposicion de sistemas. En escenarios de migracion (brownfield), herramientas como
Mono2Micro (Kalia et al., 2021) utilizan técnicas de clustering temporoespacial sobre trazas
de ejecucion y analisis estatico de cédigo para recomendar particiones. Sin embargo, como
se destaca en revisiones sistematicas recientes (Narvéez et al., 2025), estos enfoques son
inaplicables en proyectos greenfield debido a la inexistencia de artefactos de codigo o logs
de ejecucion previos.

106

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

Para nuevos desarrollos, la literatura propone el analisis de requisitos textuales mediante
Procesamiento de Lenguaje Natural (NLP). (Bajaj et al., 2022) presentan GreenMicro, un
enfoque que utiliza casos de uso UML y entidades de base de datos para identificar servicios
mediante algoritmos de agrupamiento. De manera similar, (Vera-Rivera et al., 2020) y su
herramienta SEMGROMI (Vera-Rivera et al., 2023) emplean algoritmos de similitud semantica
sobre historias de usuario para proponer agrupaciones de microservicios. Mas recientemen-
te, enfoques basados en Deep Learning como GTMicro (Bajaj et al., 2024) utilizan modelos
Transformers (BERT) para mejorar la precision de estas recomendaciones.

A pesar de su sofisticacion, estos métodos algoritmicos presentan limitaciones criticas
para la practica industrial: (1) operan a menudo como “cajas negras”, careciendo de validacion
semantica humana; (2) dependen de la calidad y completitud de los requisitos textuales, que
suelen ser ambiguos en etapas tempranas; y (3) no integran explicitamente la negociacion
de contratos de interfaz (APIs) como parte del proceso de disefio, un aspecto vital para la
mantenibilidad.

Arquitectura Evolutiva y Gobernanza

El problema de la evolucion arquitectonica ha sido abordado desde perspectivas de
adaptacion y documentacion continua. (Ford et al., 2022) introducen el concepto de fitness
functions como mecanismos para validar automaticamente que la arquitectura cumpla con
restricciones arquitectonicas a lo largo del tiempo. (Woods et al., 2021) amplian esta nocién
bajo el paradigma de Continuous Architecture, enfatizando la necesidad de mantener la
trazabilidad entre decisiones técnicas y objetivos de negocio.

Para la gobernanza de decisiones, (Kopp et al., 2018) formalizan los Architectural
Decision Records (ADR) como técnica estandar para registrar decisiones de disefio de forma
versionable junto al cédigo. En el plano de la implementacion, (Zimmermann et al., 2022)
sistematizan patrones de disefio de APIs contract-first. Estos aportes son fundamentales
para la construccion de interfaces verificables, pero la literatura actual tiende a tratarlos como
actividades aisladas, desconectadas del proceso de descubrimiento de servicios basado en
requisitos.

Analisis de Brechas y Posicionamiento

Estudios secundarios recientes corroboran la fragmentacion del campo. (Schmidt &
Thiry, 2020) evidencian la falta de consenso metodoldgico, mientras que (Unlii et al., 2024)
concluyen que las practicas de disefio en equipos agiles contindan ancladas en supuestos
monoliticos por falta de herramientas adecuadas.

La Tabla 1 resume el analisis comparativo de los enfoques discutidos frente a la propues-
ta de este trabajo. Se observa que, mientras existen soluciones robustas para migracion y pro-
puestas tedricas para greenfield, carecemos de marcos metodoldgicos que operacionalicen

107

v UAI
~
4

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

la trazabilidad completa desde la especificacion del comportamiento (BDD) hasta la definicion
de contratos y gobernanza, integrando validacion humana en el ciclo. BDMA busca cubrir
esta brecha especifica.

TABLA 1: Comparativa de enfoques para el disefio de microservicios

Enfoque Escenario Técnica Dominante Limitacién Principal
Monoz2Micro (Kalia et al., Brownfield Clustering de trazas y Inaplicable sin cédigo
2021) andlisis estdtico existente.
GreenMicro (Bajaj et al., Greenfield Clustering de Casos Usoy Enfoque rigido; falta
2022) de Entidades validacion
semdntica experta.
SEMGROMI (Vera-Rivera Greenfield NLP y similitud semdntica No aborda la definicién
et al., 2023) en Historias de Usuario de contratos API ni
gobernanza.
DDD Puro (Evans, 2004) Agndstico Modelado estratégico Falta de prescripcién
manual metodoldgica en Agile.
BDMA Greenfield Integracion BDD- Requiere adopcion
DDDy Arquitectura de BDD; enfoque
Evolutiva estructural.

Metodologia: Enfoque de Design Science Research

El enfoque metodolégico adoptado en esta investigacion se basa en Design Science
Research (DSR), un marco fundamental en Ingenieria de Software para abordar problemas
que requieren soluciones prescriptivas e innovadoras (Hevner et al., 2004; Peffers et al.,
2007; Wieringa, 2014). La eleccion de DSR se justifica por la naturaleza del problema: la
identificacion de microservicios en proyectos greenfield presenta desafios de incertidumbre
que no pueden resolverse Unicamente mediante modelos descriptivos, sino que exigen la
creacion de un artefacto de tipo método o proceso (March & Smith, 1995) que integre rigor
cientifico y utilidad practica.

Siguiendo el modelo de ciclos de Hevner (Hevner, 2007) y las extensiones propuestas
por Gregor y Hevner (Gregor & Hevner, 2013), la investigacidon se estructurd en torno a
tres ciclos interdependientes, complementados por una fase de consolidacién empirica (ver
Figura 1).

108

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

" Ciclo de Re- | - —_—
. Ciclo de Diseno Ciclo de Rigor
Lk Construccién Funda i6;
B e e undamentacién
del Problema erave LS
Artefacto (BDMA) Conocimiento
y Contexto . g
" Ciclo de Con-
solidacion

Evaluacion y Refi-
namiento Empirico

Figura 1: Ciclos de investigacion DSR con extensién de consolidacion.

Ciclo de Relevancia

Este ciclo conecta la investigacion con el entorno real para asegurar que el artefacto res-
ponda a una necesidad genuina. Se ejecutaron actividades de diagnéstico que incluyeron un
mapeo sistematico de la literatura (Battaglia et al., 2024) y el analisis de la practica industrial.
Se identificd que, en entornos agiles, los equipos carecen de guias sistematicas para transitar
desde historias de usuario hacia disenos distribuidos sin incurrir en deuda técnica temprana.

Ciclo de Rigor

El ciclo de rigor garantiza el sustento tedrico de la propuesta mediante la conexién con la
base de conocimiento existente. El disefio de BDMA no es ad-hoc, sino que se fundamenta en
la integracion operativa de teorias consolidadas: los patrones estratégicos de Domain-Driven
Design (DDD), la especificacion comportamental de Behavior-Driven Development (BDD) y
los principios de Arquitectura Evolutiva. Este anclaje tedrico asegura la validez conceptual
de los artefactos propuestos.

Ciclo de Diseio

Constituye el nucleo constructivo de la investigacion. En este ciclo se desarroll6 el arte-
facto BDMA de manera iterativa, definiendo sus cinco fases, las reglas de transformacion de
requisitos y los mecanismos de documentacion (ADRs). El artefacto fue refinado mediante
iteraciones de disefio logico antes de su validacion externa.

Ciclo de Consolidacion

Siguiendo los lineamientos contemporaneos de (Pries-Heje et al., 2008), se incorporo
un ciclo de consolidacion explicito para profundizar la validacién del artefacto mas alla de
su construccion. Esta fase se centrd en la evaluacién empirica mediante experimentacion

109

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

controlada (detallada en la Seccién 7), permitiendo contrastar la efectividad de la propuesta
frente a enfoques no estructurados y analizar su utilidad percibida por los usuarios en esce-
narios de aprendizaje.

Fundamentos de BDMA y Principios de Diseno

Behavior-Driven Microservice Architecture (BDMA) se define como un marco metodo-
I6gico iterativo y reproducible disefiado para sistematizar la identificacién, disefio y evolucion
de microservicios en proyectos agiles greenfield. A diferencia de los enfoques heuristicos o
puramente algoritmicos, BDMA no trata la arquitectura como un evento Unico de planificacién
(Big Design Up Front), sino como un flujo continuo que transforma requisitos narrativos en
decisiones estructurales verificables.

Principios Rectores
El marco se fundamenta en cuatro pilares tedricos que garantizan su coherencia
metodoldgica y su aplicabilidad en contextos de alta incertidumbre:

1. Trazabilidad Bidireccional: BDMA promueve una trazabilidad total, asegurando que
cada microservicio, contrato de interfaz y decisién arquitecténica pueda rastrearse
explicitamente hasta uno o mas escenarios BDD validados (Smart & Molak, 2023).
Esto mitiga la erosién arquitectédnica al vincular la solucién técnica directamente con
el valor de negocio.

2. Arquitectura Evolutiva: Basandose en los postulados de (Ford et al., 2022), el marco
asume que la estructura del sistema debe adaptarse iterativamente. Se rechaza la
rigidez de los modelos estaticos en favor de una arquitectura que evoluciona en
sincronia con los cambios funcionales, apoyada por funciones de aptitud (fitness
functions) y validacion continua.

3. Disefio Colaborativo y Lenguaje Ubicuo: El enfoque privilegia la eliminacién de silos
entre expertos del dominio y equipos técnicos. Al utilizar escenarios Gherkin como
lingua franca, se refuerza la comprensién compartida y se validan las decisiones de
disefio mediante técnicas colaborativas (Evans, 2004; Vernon, 2016).

4. Gobernanza Ligera y Evidencia Funcional: BDMA incorpora una gobernanza basa-
da en el registro sistematico de decisiones mediante Architectural Decision Records
(ADR) (Kopp et al., 2018). Asimismo, utiliza las pruebas BDD no solo como validacion
de QA, sino como mecanismo activo de verificacion de la integridad arquitectonica
(“Spec-as-Test”).

Estructura Procedimental del Marco
El proceso BDMA se organiza en cinco fases secuenciales e iterativas. Cada fase posee
entradas definidas, actividades de transformacion y artefactos de salida que alimentan la

110

ISSN 2591-5320
Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123

Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

siguiente etapa, garantizando un flujo de trabajo reproducible en cada sprint agil (ver Tabla 7).

Fase 1: Clasificacion Funcional de Escenarios

Objetivo: Esta fase inicial organiza el backlog de escenarios BDD desestructurados
en agrupaciones coherentes que representan Epics o procesos de negocio de alto nivel.
Proceso: Se analizan los escenarios redactados en lenguaje Gherkin (Given-When-Then)
para identificar afinidades semanticas. Esta actividad se fundamenta en los principios de
Continuous Architecture (Woods et al., 2021), donde las decisiones iniciales buscan alinear
la estructura del software con los flujos de valor del negocio.

TABLA 2: Artefactos de la Fase 1

Entradas Salidas

- Backlog funcional en Gherkin - Mapa de agrupamiento funcional.

- Metainformacién contextual (Tags, Epics). - Tabla de trazabilidad preliminar (Epic > Escenarios).

Fase 2: Extraccion Colaborativa de Elementos del Dominio

Objetivo: Transformar la narrativa de los escenarios agrupados en elemen-
tos técnicos tangibles. Se analizan las sentencias Gherkin para extraer Actores,
Comandos (intenciones del usuario) y Eventos (resultados observables). Proceso:
El conocimiento del dominio provisto por expertos complementa la interpreta-
cion sintactica. Se utiliza BDD como mecanismo de descripcion de comportamien-
to (Smart & Molak, 2023) para identificar entidades candidatas y sus ciclos de vida.

TABLA 3: Artefactos de la Fase 2

Entradas Salidas

- Mapa de agrupamiento funcional (F1). - Mapa de elementos del dominio (Comandos,
Eventos, Entidades).

- Conocimiento tdcito de expertos. - Matriz de relacién Escenario - Elemento.

Fase 3: Delimitaciéon y Formalizacion de Bounded Contexts Objetivo:
Objetivo:Consolidar los elementos dispersos en Bounded Contexts coherentes, defi-
niendo explicitamente sus limites y las relaciones estratégicas entre ellos.

Proceso: Se emplean técnicas colaborativas como Event Storming para visualizar flujos.
Se aplican patrones estratégicos de DDD para definir la relacién entre contextos: Partnership
(colaboracion estrecha), Conformist (adhesion estricta) o Anti-Corruption Layer (ACL) para
aislamiento defensivo (Vernon, 2016).

1M

UAI

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

TABLA 4: Artefactos de la Fase 3

Entradas Salidas
- Mapa de elementos del dominio (F2). - Mapa de Contextos (Context Map) formalizado.
- Restricciones organizacionales. - Declaracién de reglas de interaccion (ACL,OHS).

Fase 4: Derivacion de Interfaces y Contratos API
Objetivo: Traducir los comandos y eventos de cada contexto en contratos de servicio

(APIs) verificables, siguiendo un enfoque Contract-First.

Proceso: Se fundamenta en patrones de disefio de APIs (Zimmermann et al., 2022).
Cada interaccioén definida en el Mapa de Contextos se especifica como una interfaz técnica
(ej. OpenAPI/AsyncAPI), asegurando que la implementacion respete la semantica del negocio.

TABLA 5: Artefactos de la Fase 4

Entradas Salidas
- Mapa de Bounded Contexts (F3). - Especificaciones de Contratos API.
- Escenarios BDD originales. - Pruebas de contrato automatizadas.

Fase 5: Validacion Continua y Evolucién Controlada

Objetivo: Garantizar la consistencia arquitectonica a lo largo del tiempo, registrando
cambios y verificando la alineacion con los requisitos.

Proceso: Se utiliza el registro de ADRs (Kopp et al., 2018) para documentar el “por
qué”de cada cambio estructural. Las pruebas BDD se ejecutan contra los contratos derivados
para validar que la arquitectura sigue soportando los escenarios de negocio.

TABLA 6: Artefactos de la Fase 5

Entradas Salidas

- Contratos API (F4). - Bitdcora de ADRs (ADR Log).

- Escenarios BDD actualizados. - Context Map versionado.

12

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

113

TABLA 7: Resumen del Marco BDMA y Fundamentacién Teérica

Fase Concepto Clave Fundamentacion Principal

F1 Concepto Clave Fundamentacion Principal
Arquitectura alineada a Features/Epics Evolutionary Arch. (Ford et al., 2022), Continuous Arch.
(Woods et al., 2021)

F2 BDD para extraccion de elementos de BDD in Action (Smart & Molak, 2023), Relacién BDD-
dominio DDD (Hippchen et al., 2017)

F3 Bounded Contexts y Event Storming DDD (Evans, 2004), Event Storming (Brandolini, 2013)

F4 Diseno de APIs Contract-First API Patterns (Zimmermann et al., 2022)

Fs ADRs y Validacién Continua Markdown ADRs (Kopp et al., 2018)

Fases del Proceso Metodolagico

La ejecucion de BDMA se estructura como un flujo secuencial pero iterativo, disefiado
para reducir progresivamente la incertidumbre arquitectonica. Antes de describir las fases,
es crucial comprender que la delimitacién de microservicios no se restringe a trazar fronte-
ras internas, sino que requiere explicitar la gobernanza de las interacciones. Siguiendo los
patrones estratégicos de Domain-Driven Design (Evans, 2004; Vernon, 2016), BDMA clasifica
las relaciones entre contextos para prevenir el acoplamiento accidental.

Durante el proceso, se identifican y formalizan tres tipos de relaciones criticas:

1. Partnership (Asociacién): Dos contextos colaboran de manera simétrica y estrecha.
El fallo en uno impacta inmediatamente al otro, lo que requiere una coordinacion
sincrénica entre equipos.

2. Conformist (Conformista): Un contexto consumidor se adhiere estrictamente al
modelo de datos del proveedor. Aunque simplifica la integracién, subordina la evo-
lucién del consumidor a las decisiones del proveedor.

3. Anticorruption Layer (ACL): Un contexto introduce una capa de traduccion defensiva
para aislar su modelo de dominio interno de modelos externos inestables o legados.
Este patrdn es vital en arquitecturas evolutivas para mantener la pureza del disefio
(Ford et al., 2022).

A continuacion, se detallan las cinco fases del marco, describiendo la mecanica de
transformacién de artefactos en cada etapa.

Fase 1: Clasificacion Funcional de Escenarios
Esta fase organiza el backlog de escenarios BDD validados en agrupaciones cohe-
rentes que representan Epics o procesos de negocio transversales. El objetivo es superar

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

la visién fragmentada de las historias de usuario individuales para identificar “zonas de
afinidad’funcional (Erder & Pureur, 2015; Ford et al., 2022).

Las entradas son los escenarios redactados en lenguaje Gherkin (Given-When-Then).
El proceso de clasificacion no es meramente sintactico; implica analizar la metainformacion
con-textual para detectar qué escenarios comparten disparadores o estados finales comunes.
La salida principal es el Mapa de Agrupamiento Funcional, un artefacto de referencia que
actua como hipétesis inicial de los limites del sistema, alineando las decisiones técnicas
tempranas con los objetivos macro del negocio.

Fase 2: Extraccion Colaborativa de Elementos del Dominio

Una vez agrupados los escenarios, se procede a la diseccion técnica de la narrativa.
En esta fase, los escenarios dejan de tratarse solo como requisitos de prueba y pasan a ser
fuentes de mineria de conocimiento (Smart & Molak, 2023). Se aplica un analisis semanti-
co —asistido por expertos del dominio— para mapear las sentencias Gherkin a elementos
tacticos de DDD:

» Las sentencias When (acciones) se transforman en candidatos a Comandos.
» Las sentencias Then (resultados) se identifican como Eventos de Dominio.

* Los sustantivos recurrentes en Given emergen como candidatos a Entidades o
Agregados.

Este proceso genera el Mapa de Elementos del Dominio, un artefacto que aporta tra-
zabilidad explicita: cada elemento técnico (ej. un tépico de Kafka o un endpoint REST) tiene
un origen directo en una sentencia de comportamiento validada (Rademacher et al., 2017).

Fase 3: Delimitacion y Formalizacién de Bounded Contexts

Tomando como insumo los mapas de elementos, esta fase consolida los limites
arquitectonicos. Aqui se aplica el principio de alta cohesién y bajo acoplamiento para agru-
par comandos y eventos en Bounded Contexts definitivos.

Se utiliza la técnica de Event Storming (Brandolini, 2013) para visualizar el flujo de even-
tos a través de los grupos funcionales. El resultado es el Context Map, que no solo define qué
funcionalidad pertenece a qué servicio, sino cémo interactian (Sincrénico vs. Asincronico) y
bajo qué patrén de gobernanza (Partnership, ACL, etc.) (Vernon, 2013). La formalizacion en
esta etapa es critica para detectar dependencias ciclicas antes de escribir cédigo.

Fase 4: Derivacién de Interfaces y Contratos API

Con los limites definidos, se procede a la especificacion técnica de las fronteras. Los
comandos y eventos identificados se transforman en contratos de interfaz (APIs) siguiendo
un enfoque Contract-First (Zimmermann et al., 2019).

14

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

* Los comandos publicos se traducen en especificaciones de API (ej. OpenAPl).

* Los eventos de dominio se formalizan en esquemas de mensajeria (ej. AsyncAPI/
Avro).

Esta fase asegura que la implementacion técnica respete la semantica del negocio. Los
contratos generados sirven doble propdsito: documentan la interfaz para los consumidores
y actian como .especificacién ejecutable”’para las pruebas automatizadas en la arquitectura
evolutiva (Ford et al., 2022).

Fase 5: Validacion Continua y Evolucion Controlada

La arquitectura de microservicios no es estatica; debe evolucionar. Esta fase institucio-
naliza la gobernanza mediante Architectural Decision Records (ADR) (Kopp et al., 2018).
Cada vez que un escenario BDD cambia o se afiade, se evalla su impacto en los contratos
existentes.

Las salidas de esta fase incluyen bitacoras de decisiones inmutables y versiones
actualizadas del Context Map. Esto habilita una auditoria completa del sistema: ante un
cambio en la implementacion, es posible rastrear hacia atras hasta el ADR que motivo el
cambio, el contrato afectado y el escenario BDD original, cerrando el ciclo de trazabilidad
metodoldgica (Erder & Pureur, 2015).

Ejemplo de Aplicacién: Plataforma de Gestion Cientifica

Para validar la aplicabilidad del marco BDMA en un escenario de complejidad realista,
se seleccioné como caso de estudio el disefio de una **Plataforma Distribuida para la Gestion
de Publicaciones Cientificas**. Este dominio fue elegido por presentar desafios arquitecto-
nicos tipicos de sistemas distribuidos: flujos de trabajo asincrénicos, multiples actores con
permisos granulares (autores, revisores, editores), reglas de negocio cambiantes (politicas
editoriales) y la necesidad de integracion con ecosistemas externos.

Descripcion del Escenario y Requisitos
La organizacién requiere un sistema que gestione el ciclo de vida completo de una
publicacién, desde el envio del manuscrito hasta su aceptacion final y certificacién.

Los requisitos funcionales, capturados inicialmente como Epics, incluyen:

» Gestion de Identidad Federada: Registro de investigadores y autenticacion segura,
con soporte para perfiles enriquecidos mediante ORCID.

» Core Editorial: Soporte para envios versionados, control estricto de deadlines 'y ges-
tion de conflictos de interés en la asignacion de revisores.

115

v UAI
~
4

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

* Procesos de Revision: Manejo de flujos de revision ciega (simple o doble) y emision
de dictdmenes editoriales basados en quérum.

* Integracion y Métricas: Sincronizacién bidireccional con bases de datos externas
(Scopus, Google Scholar) y generacion de reportes de impacto.

Ejecucion del Proceso BDMA

Aplicando las fases del marco, se procesoé un backlog de escenarios BDD para derivar
la estructura de servicios. La Tabla 8 presenta una muestra representativa de la trazabilidad
generada durante la Fase 3 y 4, vinculando requisitos funcionales con decisiones estructu-
rales y eventos de dominio.

TABLA 8: Matriz de Trazabilidad: Escenarios BDD a Elementos de Arquitectura

Feature / Epic Escenario BDD (Resumido) Bounded Context Eventos/Comandos Clave
Registro y Registro exitoso con ORCID y Identity & Access UsuarioRegistrado,
Autenticacién verificacién de email EmailConfirmado
Gestion de Perfil Importar métricas de impacto Profiles External MetricasSincronizadas,
desde fuentes externas Integrations PerfilActualizado
Envio de Envio vdlido a evento antes del ~ Submissions EnvioRegistrado,
Articulos deadline ComprobanteGenerado
Envio de Rechazo automdtico por envio Submissions EnvioRechazado,
Articulos fuera de fecha DeadlineExpirado
Asignacién de Asignacién automdtica Reviewing RevisoresAsignados,

Revi—sores
Decision
Editorial

Integraciones
Externas

respetando conflictos de interés

Emisién de decision basada en
reglas y quérum

Validacién de DOl y metadatos
al registrar envio

Editorial Decisioning

External Integrations

ConflictoDetectado

DecisionEmitida,
CartaGenerada

DOIvalidado,
MetadatosCompletos

Arquitectura Emergente y Mapa de Contextos

Como resultado de la Fase 3 (Delimitacién), se identificaron ocho Bounded Contexts
con responsabilidades segregadas: Identity & Access, Profiles, Submissions, Reviewing,
Editorial Decisioning, Venue Management, Metrics & Reporting y External Integrations.

La Figura 2 ilustra el Mapa de Contexto derivado. Es crucial notar cémo BDMA prescribié
los patrones de interaccion para proteger la integridad del dominio:

1. Anticorruption Layer (ACL) en Integraciones: El contexto Profiles consume datos
de External Integrations mediante una ACL. Esto aisla el modelo interno de perfiles
de los cambios frecuentes en las APIs de terceros (ORCID, Scopus), garantizando
estabilidad evolutiva (Ford et al., 2022).

116

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

2. Open Host Service (OHS) en Gestion de Sedes: Venue Management expone sus
reglas (fechas, politicas) como un servicio publico estandarizado (ReglasPublicadas),
permitiendo que Submissions y Reviewing consuman estas reglas sin acoplarse a la
I6gica interna de configuracion de eventos.

3. Partnership (PAR) en el Nucleo: Se establecio una relacion de asociacion entre
Submissions y Reviewing. Dado que el ciclo de vida de una revisién depende
intrinsecamente de la version del manuscrito enviado, ambos equipos deben coor-
dinar estrechamente sus cambios de esquema para mantener la consistencia del
flujo EnvioRegistrado — Revisionlniciada.

R —_—
| BEDF, Mo & {
i
“,
- TR —
[Lo=0 - e
™ Beunanedascy
Fertildcusizags friveh
mosn, osies & | iaci) e
| o ———
":-‘ Metriudincrond radin
.. A
{“T;nu'“ | e Bevaicolagiimide
/ e P
/ =i e
| — O S E:I
! Vercritayartass | Stding
/ {Bax]
| T -
AR ety & $_| Erviclegestis: |
Ferens | ey [
Rpr———
oy
|
\\ gt i
iz
] | DetrponEmtiy
sencrineats 4 R Lerbatacod +ilioa
[\ i = oo
\ ' —
frranra G, 1 B
DV e AT | . i
N .

= e

Fgura 2: Mapa de contexto resultante de la primera iteracion BDMA, explicitando patrones estratégicos (ACL,
OHS, PAR) para gobernar las interacciones entre microservicios.

La combinacién de la matriz de trazabilidad (Tabla 8) y el mapa estratégico (Figura
2) evidencia que BDMA no solo identifica ¢cajas”de servicios, sino que define la semantica
de sus relaciones, produciendo una arquitectura verificable y coherente con los requisitos
funcionales desde la primera iteracion.

Validacion Empirica

Para evaluar la efectividad y aplicabilidad del marco BDMA, se disefié un estudio empi-
rico de caracter exploratorio en un contexto académico controlado. El objetivo principal fue

17

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

medir el impacto del uso de un método estructurado frente a enfoques ad-hoc en la calidad
percibida del disefio arquitecténico y la comprensién del dominio.

Participantes y Demografia

El estudio conté con la participacion de N=28 profesionales matriculados en un pro-
grama de posgrado en Arquitectura de Software. La muestra presentd una heterogeneidad
relevante para el estudio:

¢ Perfil Profesional: Predominancia de desarrolladores senior y lideres técnicos de
la industria TI.

e Experiencia Previa: Mediante una encuesta de caracterizacion (escala 0-5), se
identifico un nivel alto en metodologias agiles (u=4.2) y patrones de disefo (u =
3.9), pero una experiencia limitada en BDD (u = 1.8) y disefio de microservicios dis-
tribuidos (u=2.1).

Esta configuracion demografica es representativa de equipos de transicion en la indus-
tria: profesionales competentes en monolitos que enfrentan la curva de aprendizaje de sis-
temas distribuidos.

Diseno Experimental

Se empled un disefio cuasi-experimental intra-sujeto con medidas repetidas. Los partici-
pantes se organizaron en equipos y abordaron el mismo problema de disefio (la plataforma
de gestion cientifica descrita en la Seccién 6) en dos fases consecutivas:

1. Fase de Control (Sin BDMA): Los equipos disefiaron la solucién utilizando su conoci-
miento previo y herramientas estandar de DDD (disefio tactico libre), sin una guia
procedimental especifica.

2. Fase Experimental (Con BDMA): Se introdujo el marco metodoldgico. Los equipos
refactorizaron su solucion aplicando secuencialmente las cinco fases de BDMA,
generando los artefactos prescritos (Mapas de Agrupamiento, Tablas de Elementos,
Contratos APl y ADRs).

Instrumentos de Recoleccion de Datos

Tras completar la fase experimental, se administré un cuestionario de percepcion basado
en el Modelo de Aceptacion Tecnoldgica (TAM), utilizando una escala Likert de 5 puntos para
evaluar dimensiones de utilidad, facilidad de uso y mejora en la calidad del disefio. Adicional-
mente, se recolectaron respuestas abiertas para analisis cualitativo.

118

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

Analisis de Resultados y Discusion

En esta seccion se presentan e interpretan los hallazgos derivados del estudio empirico
realizado con los 28 profesionales participantes. El analisis se ha estructurado para triangular
la evidencia desde multiples perspectivas, permitiendo una evaluacion holistica del impacto
del marco BDMA en el proceso de disefo. A continuacion, se desglosan los resultados en dos
dimensiones principales: una evaluacion cuantitativa basada en las métricas de percepcion de
utilidad y facilidad de uso, y un analisis cualitativo de la retroalimentacion abierta, concluyendo
con una discusion critica sobre las implicaciones y las amenazas a la validez del estudio.

Resultados Cuantitativos
El analisis estadistico descriptivo de las respuestas (Tabla 9) revela una aceptacion
altamente positiva del marco.

TABLA 9: Resultados de la encuesta de validacién (N=28)

Dimension Evaluada Media DE Min Max
Comprensién del Dominio (Utilidad del enfoque sistemdtico) 475 044 4
Razonamiento sobre Comportamiento (Uso de BDD) 4.68 0.47 4 5
Soporte a la Decisién (Guia paso a paso) 4.57 0.69 3 5
Precisién en la Identificacién de Servicios 4.46 0.74 3 5
Percepcion de Mantenibilidad 4.50 0.63 3 5
Reflexién Arquitecténica (Comparativa A/B) 4.57 0.50 4 5

Los valores medios superiores a 4.45 en todas las dimensiones, con desviaciones
estandar bajas (< 0.75), indican un fuerte consenso sobre la utilidad de BDMA. Destaca
especialmente la mejora en la Comprension del Dominio (u=4.75), lo que sugiere que
la fase de clasificacion y extraccion de elementos (Fases 1y 2) es efectiva para reducir la
ambigledad de los requisitos iniciales.

Analisis Cualitativo

En las respuestas abiertas, los participantes sefialaron que el marco actia como un
“mecanismo de ordenamiento cognitivo”. La obligatoriedad de generar artefactos intermedios
(como el mapa de elementos del dominio) forzé a los equipos a discutir detalles que habian
pasado por alto en la fase de control. Como contraparte, se identificd una curva de aprendi-
zaje inicial en la adopcion de la sintaxis Gherkin y en la distincion entre Comando y Evento,
lo que sugiere la necesidad de herramientas de soporte o capacitacion previa.

Discusion y Amenazas a la Validez
Los resultados sugieren que BDMA es particularmente eficaz para cerrar la brecha de
conocimiento en equipos que transicionan hacia microservicios. Al comparar las soluciones

119

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvéaez, D.

de la Fase 1 vs. Fase 2, se observé que los disefios guiados por BDMA presentaban limites
de servicio mas cohesivos y un uso mas explicito de patrones de comunicacién (ACL, OHS),
reduciendo el acoplamiento accidental.

Amenazas a la Validez:

¢ Validez Interna: El disefio intra-sujeto podria introducir un efecto de aprendizaje (los
participantes entendian mejor el problema en la segunda fase). Sin embargo, el salto
cualitativo en la documentacién de decisiones (ADRs) es atribuible directamente al
método.

e Validez Externa: Al tratarse de un entorno académico con un problema de juguete
(toy problem), la generalizacién a proyectos industriales de gran escala con deuda
técnica heredada debe tomarse con cautela.

¢ Validez de Constructo: Las métricas se basan en percepcion subjetiva. Futuros
estudios deberan incorporar métricas objetivas de arquitectura (ej. métricas de aco-
plamiento estructural).

Conclusiones y Trabajo Futuro

Este trabajo ha presentado Behavior-Driven Microservice Architecture (BDMA), un
marco metodoldgico disefiado para abordar la complejidad inherente al disefio de sistemas
distribuidos en escenarios greenfield. A través de un proceso iterativo de cinco fases, BDMA
operacionaliza la integracion de DDD y BDD, transformando la incertidumbre de los requisitos
funcionales en una arquitectura verificable y trazable.

Las contribuciones principales radican en: (1) la formalizaciéon de un proceso reproducible
que elimina la dependencia exclusiva de la intuicion del arquitecto experto; (2) la definicion
de un conjunto de artefactos intermedios que aseguran la alineacion continua entre negocio
y tecnologia; y (3) evidencia empirica preliminar que demuestra su eficacia pedagdgica y
practica para mejorar la cohesién del disefio.

Implicaciones para la Automatizacion

Un hallazgo colateral significativo es que la estructura sistematica de BDMA lo convierte
en un candidato ideal para la automatizacion. Al estandarizar las entradas (Gherkin) y las
salidas (Contratos, Mapas), el marco sienta las bases para el desarrollo de agentes inteligen-
tes. Futuras investigaciones exploraran el uso de Modelos de Lenguaje Grande (LLMs) para
ejecutar las fases de extraccion y clasificacion de BDMA de manera auténoma, utilizando
este marco metodolégico como el .andamiaje”de razonamiento para la IA.

120

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

121

Lineas de Trabajo Futuro
La agenda de investigacion se expande en las siguientes direcciones:

* Validacién Industrial: Ejecutar estudios de caso longitudinales en empresas de
desarrollo de software para evaluar el impacto de BDMA en el Time-to-Market y la
tasa de defectos arquitectonicos.

* Meétricas Objetivas: Desarrollar un modelo de calidad cuantitativo que mida automati-
camente el acoplamiento y la cohesién de los disefios generados por BDMA.

¢ Herramientas de Soporte: Construir una herramienta CLI o plugin de IDE que asista
a los desarrolladores en la generacion de los artefactos del marco, reduciendo la
friccion manual.

Referencias

Bajaj, D., Bharti, U., Gupta, ., Gupta, P., & Yadav, A. (2024). GTMicro—Microservice identification
approach based on deep NLP transformer model for greenfield developments. International Journal
of Information Technology, 16(5), 2751-2761.

Bajaj, D., Goel, A., & Gupta, S. C. (2022). GreenMicro: identifying microservices from use cases in
greenfield development. IEEE Access, 10, 67008-67018.

Battaglia, N., Garcia, A. N., & Congiusti, A. (2024). Descubrimiento de Microservicios en Metodologias
Agiles: un mapeo sistematico de la literatura. XXX Congreso Argentino de Ciencias de la
Computacién (CACIC)(La Plata, 7 al 11 de octubre de 2024).

Brandolini, A. (2013). Introducing event storming. blog, Ziobrando’s Lair, 18.

Cardoso, J. P. S. (2021). A guide for microservices in greenfield projects [Tesis de maestria, Instituto
Politecnico do Porto (Portugal)].

Cervantes, H., & Kazman, R. (2024). Designing software architectures: a practical approach. Addison-
Wesley Professional.

Erder, M., & Pureur, P. (2015). Continuous architecture: sustainable architecture in an agile and cloud-
centric world. Morgan Kaufmann.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software. Addison-Wesley
Professional.

Ford, N., Parsons, R., Kua, P., & Sadalage, P. (2022). Building evolutionary architectures. .O’Reilly
Media, Inc.”

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum
impact. MIS quarterly, 337-355.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of
information systems, 19(2), 4.

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly, 75-105.

Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., & Abeck, S. (2017). Designing
microservicebased applications by using a domain-driven design approach. International Journal
on Advances in Software, 10(3&4), 432-445.

Josélyne, M. ., Tuheirwe-Mukasa, D., Kanagwa, B., & Balikuddembe, J. (2018). Partitioning
microservices: A domain engineering approach. Proceedings of the 2018 International Conference
on Software Engineering in Africa, 43-49.

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., & Banerjee, D. (2021). Mono2micro: a
practical and effective tool for decomposing monolithic java applications to microservices.
Proceedings of the 29th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, 1214-1224.

Kopp, O., Armbruster, A., & Zimmermann, O. (2018). Markdown Architectural Decision Records:
Format and Tool Support. ZEUS, 55-62.

Lewis, J., & Fowler, M. (2014). Microservices: a definition of this new architectural term. MartinFowler.
com, 25(14-26), 12.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology.
Decision support systems, 15(4), 251-266.

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G. (2025). Designing microservices using ai: A
systematic literature review. Software, 4(1), 6.

Newman, S. (2021). Building microservices: designing fine-grained systems. .O’Reilly Media, Inc.”

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of management information systems,
24(3), 45-77.

Ponce, F., Soldani, J., Astudillo, H., & Brogi, A. (2022). Smells and refactorings for micro-services
security: A multivocal literature review. Journal of Systems and Software, 192, 111393.

Pries-Heje, J., Baskerville, R., & Venable, J. (2008). Evaluation risks in design science research: A
framework. Proceedings from the 3rd International Conference on Design Science Research in IT,
May 2008, Atlanta, Georgia, USA, 329-334.

Rademacher, F., Sachweh, S., & Zindorf, A. (2017). Towards a UML profile for domain-driven
design of microservice architectures. International Conference on Software Engineering and
Formal Methods, 230-245.

Schmidt, R. A., & Thiry, M. (2020). Microservices identification strategies: A review focused on Model-
Driven Engineering and Domain Driven Design approaches. 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI), 1-6.

Smart, J. F., & Molak, J. (2023). BDD in Action: Behavior-driven development for the whole software
lifecycle. Simon; Schuster.

Taibi, D., & Lenarduzzi, V. (2018). On the definition of microservice bad smells. IEEE software, 35(3),
56-62.

122

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for lterative ...
Battaglia, N., Rossi, G., Fernandez , A., & Narvaez, D.

Unlii, H., Kennouche, D. E., Soylu, G. K., & Demirérs, O. (2024). Microservice-based projects in agile
world: A structured interview. Information and Software Technology, 165, 107334.

Vera-Rivera, F. H., Cuadros, E. G. P., Perez, B., Astudillo, H., & Gaona, C. (2023). SEM-GROMI—a
semantic grouping algorithm to identifying microservices using semantic similarity of user stories.
PeerJ Computer Science, 9, e1380.

Vera-Rivera, F. H., Puerto-Cuadros, E. G., Astudillo, H., & Gaona-Cuevas, C. M. (2020). Microservices
backlog-a model of granularity specification and microservice identification. International
Conference on Services Computing, 85-102.

Vernon, V. (2013). Implementing domain-driven design. Addison-Wesley.
Vernon, V. (2016). Domain-driven design distilled. Addison-Wesley Professional.

Wieringa, R. (2014). Design science methodology for information systems and software engineering.
Springer.

Woods, E., Erder, M., & Pureur, P. (2021). Continuous architecture in practice: Software architecture in
the age of agility and DevOps. Addison-Wesley Professional.

Zhong, C., Li, S., Huang, H., Liu, X., Chen, Z., Zhang, Y., & Zhang, H. (2024). Domaindriven design
for microservices: An evidence-based investigation. IEEE Transactions on Software Engineering,
50(6), 1425-1449.

Zimmermann, O., Stocker, M., Lubke, D., Zdun, U., & Pautasso, C. (2022). Patterns for API design:
simplifying integration with loosely coupled message exchanges. Addison-Wesley Professional.

Zimmermann, O., Stocker, M., Libke, D., Pautasso, C., & Zdun, U. (2019). Introduction to microservice
API patterns (MAP).

123

