
102
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: un marco metodológico para la ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

102

Este trabajo está bajo una Licencia Creative Commons Atribución 4.0 Internacional

Behavior-Driven Microservice Architecture: un marco
metodológico para la identificación iterativa de
microservicios en proyectos ágiles greenfield
Behavior-Driven Microservice Architecture:
A Methodological Framework for Iterative
MicroserviceIdentification in Agile Greenfield
Projects

Nicolás Battaglia
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

Gustavo Rossi
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. LIFIA, Facultad de
Informática, Universidad Nacional de La Plata (UNLP), Argentina.

Alejandro Fernández
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

Daniel Narváez
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

DOI https://doi.org/10.59471/raia2025227
Enviado: junio 2025. Aceptado: octubre 2025. Publicado: diciembre 2025
Como citar: Battaglia, N., Rossi, G., Fernández , A., & Narváez, D. (2025). Behavior-Driven Microservice Archi-
tecture: un marco metodológico para la identificación iterativa de microservicios en proyectos ágiles greenfield.
Revista Abierta De Informática Aplicada, 9(1). https://doi.org/10.59471/raia2025227

Resumen

La adopción de arquitecturas basadas en microservicios plantea desafíos significa-
tivos en la fase de diseño, particularmente en contextos greenfield donde las decisiones
iniciales condicionan la mantenibilidad futura. Aunque existen aportes relevantes desde
Domain-Driven Design (DDD) y Behavior-Driven Development (BDD), persiste una brecha
metodológica: los enfoques actuales suelen ser teóricos, carecen de mecanismos explícitos
de trazabilidad entre requisitos funcionales y decisiones arquitectónicas, o se enfocan en
escenarios de reingeniería brownfield. Este trabajo introduce Behavior-Driven Microservice
Architecture (BDMA), un marco metodológico sistemático, iterativo y reproducible que guía
la identificación, diseño y evolución de microservicios en proyectos ágiles greenfield. BDMA
integra principios de DDD, técnicas de BDD y prácticas de arquitectura evolutiva para trans-
formar escenarios funciona¬les en bounded contexts, contratos de servicio y registros de
decisiones arquitectónicas. Como aporte principal, BDMA ofrece un enfoque práctico que

https://doi.org/10.59471/raia2025227
https://doi.org/10.59471/raia2025227

103
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

asegura alineación entre requisitos y arquitectura, fomenta la colaboración interdisciplinaria
y habilita trazabilidad completa desde los escenarios BDD hasta la implementación, dem-
ostrada mediante una Architectural Kata ilustrativa.

PALABRAS CLAVES: Microservicios, Arquitecturas de software, Metodos ágiles,
Greenfield development.

Abstract

The adoption of microservice-based architectures poses significant challenges in the
design phase, particularly in greenfield contexts where initial decisions condition future
maintainability. Although there are relevant contributions from Domain-Driven Design
(DDD) and Behavior-Driven Development (BDD), a methodological gap remains: current
approaches tend to be theoretical, lack explicit mechanisms for traceability between functional
requirements and architectural decisions, or focus on brownfield reengineering scenarios.
This work introduces Behavior-Driven Microservice Architecture (BDMA), a systematic,
iterative, and reproducible methodological framework that guides the identification, design,
and evolution of microservices in agile greenfield projects. BDMA integrates DDD principles,
BDD techniques, and evolutionary architecture practices to transform functional scenarios
into bounded contexts, service contracts, and architectural decision records. As its main
contribution, BDMA offers a practical approach that ensures alignment between requirements
and architecture, fosters interdisciplinary collaboration, and enables complete traceability from
BDD scenarios to implementation, demonstrated through an illustrative Architectural Kata.

KEYWORDS: Microservices, Software architectures, Agile methods, Greenfield development.

Introducción

El diseño arquitectónico constituye la fase donde se estructuran las decisiones de más
alto nivel en el desarrollo de software, determinando la organización del sistema y su capa-
cidad de evolución. En proyectos greenfield, este proceso plantea un desafío fundamental:
la mayoría de las decisiones críticas se toman en etapas tempranas, cuando aún existe un
alto grado de incertidumbre y una carencia de artefactos técnicos preexistentes (Cervantes
& Kazman, 2024). A diferencia de la migración de sistemas monolíticos, donde el código
fuente actúa como referencia tangible para la refactorización, el desarrollo desde cero exige
derivar la arquitectura directamente de requisitos funcionales que a menudo son ambiguos o
incompletos. Estas decisiones —que incluyen la definición de límites de servicios, contratos
de integración y modelos de dominio— suelen ser difíciles de modificar una vez implemen-
tadas, debido a su impacto transversal en la evolución del sistema (Ford et al., 2022; Woods
et al., 2021). Esta característica convierte a la arquitectura en un conjunto de “decisiones
costosas de cambiar” que condicionan la mantenibilidad y la capacidad de adaptación futura.

104
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

En los últimos años, las arquitecturas basadas en microservicios se han consolidado
como una alternativa predominante al paradigma monolítico, impulsadas por la necesidad
de agilidad, escalabilidad, resiliencia y autonomía de despliegue en entornos basados en
la nube. Su valor radica en dividir el sistema en servicios pequeños y autónomos, cada uno
con un ciclo de vida independiente (Lewis & Fowler, 2014; Newman, 2021). Sin embargo,
esta flexibilidad trae consigo retos mayores que las metodologías tradicionales no abordan
completamente. La literatura reciente identifica problemas críticos como la correcta identifi-
cación de límites de servicio que asegure cohesión interna y baja dependencia, la gestión de
la comunicación entre servicios y el mantenimiento de la consistencia de datos en entornos
distribuidos (Narváez et al., 2025).

Cuando la delimitación de servicios se realiza de forma inadecuada, emergen síntomas
recurrentes de degradación arquitectónica, conocidos como “bad smells”. Estos incluyen
servicios demasiado granulares, responsabilidades superpuestas, dependencias cíclicas o
la creación de “servicios dios”que acoplan excesivamente el sistema, comprometiendo la
mantenibilidad y favoreciendo la acumulación temprana de deuda técnica (Ponce et al., 2022;
Taibi & Lenarduzzi, 2018). Además, la descentralización de la gestión de datos introduce
complejidades adicionales, como la necesidad de orquestar transacciones distribuidas y
garantizar la consistencia eventual, aspectos que frecuentemente se subestiman en la fase
de diseño inicial provocando fallos de integración tardíos.

La noción de arquitectura evolutiva enfatiza que, frente a entornos cambiantes, las
arquitecturas deben diseñarse para sostener el cambio continuo mediante mecanismos de
validación automatizados y la documentación sistemática de decisiones arquitectónicas (Ford
et al., 2022). Esta perspectiva resalta la necesidad de marcos metodológicos que no solo
guíen el diseño inicial, sino que también acompañen la evolución. En contextos ágiles, donde
los requisitos evolucionan de manera iterativa y los equipos buscan entregar valor de forma
incremental, esta rigidez inicial genera una tensión significativa. La literatura muestra que
las prácticas tradicionales de estimación y diseño en entornos ágiles —como story points o
planning poker— fueron concebidas para arquitecturas monolíticas y no se adaptan natural-
mente a las particularidades de sistemas distribuidos, que requieren autonomía de servicios,
comunicación asincrónica y límites semánticos explícitos (Ünlü et al., 2024).

Diversos enfoques han buscado mitigar este problema desde perspectivas teóricas y
técnicas. El Domain-Driven Design (DDD) ha resaltado la relevancia de los bounded contexts
como unidad para la separación de responsabilidades e identificación de microservicios
(Evans, 2004; Vernon, 2016). Sin embargo, estudios empíricos y revisiones sistemáticas
recientes evidencian que la aplicación directa de DDD enfrenta limitaciones prácticas, espe-
cialmente la falta de mecanismos prescriptivos para traducir conceptos abstractos en diseños
concretos en contextos ágiles (Narváez et al., 2025; Zhong et al., 2024). Por su parte, el
Behavior-Driven Development (BDD) ha enfatizado el valor de escenarios funcionales expre-
sados en lenguaje ubicuo como medio para alinear negocio y técnica (Evans, 2004; Smart
& Molak, 2023). No obstante, existe una brecha metodológica significativa: estos enfoques

105
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

suelen aplicarse de manera aislada, sin articular un proceso integral que permita transformar
sistemáticamente requisitos funcionales textuales en decisiones arquitectónicas verificables
y trazables (Rademacher et al., 2017). Aunque herramientas basadas en Inteligencia Artificial
comienzan a emerger para asistir en la descomposición (Narváez et al., 2025), estas requie-
ren de un marco metodológico subyacente que estructure los artefactos de entrada y salida
para ser efectivas.

En este escenario, proponemos Behavior-Driven Microservice Architecture (BDMA),
un marco metodológico que integra principios de DDD y BDD con prácticas de arquitectura
evolutiva (Ford et al., 2022; Kopp et al., 2018). BDMA se orienta específicamente a proyectos
greenfield, proporcionando un proceso iterativo, colaborativo y reproducible que acompaña
la evolución funcional sin perder coherencia estructural. Su aporte principal radica en ofrecer
un mecanismo sistemático para transformar escenarios BDD en artefactos arquitectónicos
tangibles —mapas de agrupamiento funcional, bounded contexts explícitos, contratos API
contract­first y registros de decisiones (ADR)— que sostienen la alineación continua entre la
visión de negocio y la implementación técnica.

Las contribuciones de este trabajo son:

•	 La definición de un marco metodológico que integra DDD, BDD y prácticas de
arquitectura evolutiva en un proceso reproducible paso a paso.

•	 La propuesta de artefactos intermedios formalizados que facilitan la trazabilidad
completa desde el requisito funcional hasta la interfaz del servicio y su validación
continua.

•	 La presentación de un ejemplo ilustrativo y una validación preliminar que evidencian
la aplicabilidad de BDMA para reducir la incertidumbre en fases tempranas de diseño.

El resto del artículo se estructura de la siguiente manera: La Sección 2 analiza los traba-
jos relacionados, clasificando los enfoques existentes y destacando la brecha metodológica.
La Sección 3 detalla la metodología de investigación basada en Design Science Research
(DSR). En la Sección 4, se presentan los fundamentos teóricos y principios rectores de
BDMA. La Sección 5 describe en profundidad las cinco fases del marco y sus artefactos. La
Sección 6 ilustra la aplicación del método mediante un caso de estudio de una plataforma
científica. La Sección 7 presenta la validación empírica y el análisis de resultados. Finalmente,
la Sección 9 ofrece las conclusiones y líneas de trabajo futuro.

Trabajos Relacionados

La identificación y diseño de microservicios constituye un problema de optimización com
plejo que ha sido abordado desde múltiples perspectivas en la última década. La literatura

106
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

actual puede clasificarse en tres corrientes principales: enfoques funcionales basados en
el dominio, estrategias algorítmicas o asistidas por inteligencia artificial, y marcos de gober-
nanza para la arquitectura evolutiva. A pesar de los avances, persiste una fragmentación
metodológica, particularmente en escenarios greenfield, donde la ausencia de código legado
impide el uso de técnicas de refactorización tradicionales.

Enfoques de Descomposición Basados en el Dominio y Heurísticas
En el contexto de la ingeniería de software tradicional, diversos trabajos han buscado

derivar microservicios a partir de descripciones funcionales de alto nivel y modelado del
dominio.

(Josélyne et al., 2018) proponen una partición de microservicios basada en ingeniería
de dominio y líneas de producto. Si bien ofrecen un marco estructurado para gestionar la
variabilidad, su enfoque carece de mecanismos explícitos para la iteración ágil o la validación
continua de los límites definidos.

La integración de Domain-Driven Design (DDD) y Behavior-Driven Development (BDD)
ha sido explorada como una vía para alinear los requisitos con la arquitectura. (Hippchen et
al., 2017) examinan la relación teórica entre DDD y BDD, resaltando su potencial sinérgico,
pero sin formalizar un proceso metodológico operativo que guíe al arquitecto paso a paso.
Por su parte, (Rademacher et al., 2017) introducen perfiles UML para representar bounded
contexts y sus interacciones. Aunque aportan estandarización visual y formalización, su
propuesta mantiene una orientación principalmente teórica y de difícil adopción en equipos
ágiles que priorizan la documentación ligera.

Más recientemente, (Zhong et al., 2024) llevaron a cabo una investigación empírica
extensiva sobre el uso de DDD en la industria. Sus conclusiones revelan que, si bien DDD
es valioso para estructurar el dominio, su aplicación directa enfrenta tensiones metodológi-
cas significativas en entornos ágiles, donde la falta de guías prescriptivas deriva a menudo
en arquitecturas monolíticas distribuidas. Asimismo, (Cardoso, 2021) propone una guía de
lineamientos heurísticos para proyectos greenfield, reconociendo la especificidad de diseñar
desde cero. Sin embargo, al limitarse a principios generales sin artefactos verificables, su
aplicabilidad depende excesivamente de la experiencia tácita del arquitecto.

Enfoques Algorítmicos y Asistidos por Inteligencia Artificial
Con el auge de la inteligencia artificial, han surgido herramientas que automatizan la

descomposición de sistemas. En escenarios de migración (brownfield), herramientas como
Mono2Micro (Kalia et al., 2021) utilizan técnicas de clustering temporoespacial sobre trazas
de ejecución y análisis estático de código para recomendar particiones. Sin embargo, como
se destaca en revisiones sistemáticas recientes (Narváez et al., 2025), estos enfoques son
inaplicables en proyectos greenfield debido a la inexistencia de artefactos de código o logs
de ejecución previos.

107
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Para nuevos desarrollos, la literatura propone el análisis de requisitos textuales mediante
Procesamiento de Lenguaje Natural (NLP). (Bajaj et al., 2022) presentan GreenMicro, un
enfoque que utiliza casos de uso UML y entidades de base de datos para identificar servicios
mediante algoritmos de agrupamiento. De manera similar, (Vera-Rivera et al., 2020) y su
herramienta SEMGROMI (Vera-Rivera et al., 2023) emplean algoritmos de similitud semántica
sobre historias de usuario para proponer agrupaciones de microservicios. Más recientemen
te, enfoques basados en Deep Learning como GTMicro (Bajaj et al., 2024) utilizan modelos
Transformers (BERT) para mejorar la precisión de estas recomendaciones.

A pesar de su sofisticación, estos métodos algorítmicos presentan limitaciones críticas
para la práctica industrial: (1) operan a menudo como “cajas negras”, careciendo de validación
semántica humana; (2) dependen de la calidad y completitud de los requisitos textuales, que
suelen ser ambiguos en etapas tempranas; y (3) no integran explícitamente la negociación
de contratos de interfaz (APIs) como parte del proceso de diseño, un aspecto vital para la
mantenibilidad.

Arquitectura Evolutiva y Gobernanza
El problema de la evolución arquitectónica ha sido abordado desde perspectivas de

adaptación y documentación continua. (Ford et al., 2022) introducen el concepto de fitness
functions como mecanismos para validar automáticamente que la arquitectura cumpla con
restricciones arquitectónicas a lo largo del tiempo. (Woods et al., 2021) amplían esta noción
bajo el paradigma de Continuous Architecture, enfatizando la necesidad de mantener la
trazabilidad entre decisiones técnicas y objetivos de negocio.

Para la gobernanza de decisiones, (Kopp et al., 2018) formalizan los Architectural
Decision Records (ADR) como técnica estándar para registrar decisiones de diseño de forma
versionable junto al código. En el plano de la implementación, (Zimmermann et al., 2022)
sistematizan patrones de diseño de APIs contract-first. Estos aportes son fundamentales
para la construcción de interfaces verificables, pero la literatura actual tiende a tratarlos como
actividades aisladas, desconectadas del proceso de descubrimiento de servicios basado en
requisitos.

Análisis de Brechas y Posicionamiento
Estudios secundarios recientes corroboran la fragmentación del campo. (Schmidt &

Thiry, 2020) evidencian la falta de consenso metodológico, mientras que (Ünlü et al., 2024)
concluyen que las prácticas de diseño en equipos ágiles continúan ancladas en supuestos
monolíticos por falta de herramientas adecuadas.

La Tabla 1 resume el análisis comparativo de los enfoques discutidos frente a la propues-
ta de este trabajo. Se observa que, mientras existen soluciones robustas para migración y pro
puestas teóricas para greenfield, carecemos de marcos metodológicos que operacionalicen

108
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

la trazabilidad completa desde la especificación del comportamiento (BDD) hasta la definición
de contratos y gobernanza, integrando validación humana en el ciclo. BDMA busca cubrir
esta brecha específica.

TABLA 1: Comparativa de enfoques para el diseño de microservicios

Enfoque Escenario Técnica Dominante Limitación Principal

Mono2Micro (Kalia et al.,
2021)

Brownfield Clustering de trazas y
análisis estático

Inaplicable sin código
existente.

GreenMicro (Bajaj et al.,
2022)

Greenfield Clustering de Casos Uso y
de Entidades

 Enfoque rígido; falta
validación
semántica experta.

SEMGROMI (Vera-Rivera
et al., 2023)

Greenfield NLP y similitud semántica
en Historias de Usuario

No aborda la definición
de contratos API ni
gobernanza.

DDD Puro (Evans, 2004) Agnóstico Modelado estratégico
manual

Falta de prescripción
metodológica en Agile.

BDMA Greenfield Integración BDD-

DDD y Arquitectura

Evolutiva

Requiere adopción

de BDD; enfoque

estructural.

Metodología: Enfoque de Design Science Research

El enfoque metodológico adoptado en esta investigación se basa en Design Science
Research (DSR), un marco fundamental en Ingeniería de Software para abordar problemas
que requieren soluciones prescriptivas e innovadoras (Hevner et al., 2004; Peffers et al.,
2007; Wieringa, 2014). La elección de DSR se justifica por la naturaleza del problema: la
identificación de microservicios en proyectos greenfield presenta desafíos de incertidumbre
que no pueden resolverse únicamente mediante modelos descriptivos, sino que exigen la
creación de un artefacto de tipo método o proceso (March & Smith, 1995) que integre rigor
científico y utilidad práctica.

Siguiendo el modelo de ciclos de Hevner (Hevner, 2007) y las extensiones propuestas
por Gregor y Hevner (Gregor & Hevner, 2013), la investigación se estructuró en torno a
tres ciclos interdependientes, complementados por una fase de consolidación empírica (ver
Figura 1).

109
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Figura 1: Ciclos de investigación DSR con extensión de consolidación.

Ciclo de Relevancia
Este ciclo conecta la investigación con el entorno real para asegurar que el artefacto res

ponda a una necesidad genuina. Se ejecutaron actividades de diagnóstico que incluyeron un
mapeo sistemático de la literatura (Battaglia et al., 2024) y el análisis de la práctica industrial.
Se identificó que, en entornos ágiles, los equipos carecen de guías sistemáticas para transitar
desde historias de usuario hacia diseños distribuidos sin incurrir en deuda técnica temprana.

Ciclo de Rigor
El ciclo de rigor garantiza el sustento teórico de la propuesta mediante la conexión con la

base de conocimiento existente. El diseño de BDMA no es ad-hoc, sino que se fundamenta en
la integración operativa de teorías consolidadas: los patrones estratégicos de Domain-Driven
Design (DDD), la especificación comportamental de Behavior-Driven Development (BDD) y
los principios de Arquitectura Evolutiva. Este anclaje teórico asegura la validez conceptual
de los artefactos propuestos.

Ciclo de Diseño
Constituye el núcleo constructivo de la investigación. En este ciclo se desarrolló el arte-

facto BDMA de manera iterativa, definiendo sus cinco fases, las reglas de transformación de
requisitos y los mecanismos de documentación (ADRs). El artefacto fue refinado mediante
iteraciones de diseño lógico antes de su validación externa.

Ciclo de Consolidación
Siguiendo los lineamientos contemporáneos de (Pries-Heje et al., 2008), se incorporó

un ciclo de consolidación explícito para profundizar la validación del artefacto más allá de
su construcción. Esta fase se centró en la evaluación empírica mediante experimentación

110
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

controlada (detallada en la Sección 7), permitiendo contrastar la efectividad de la propuesta
frente a enfoques no estructurados y analizar su utilidad percibida por los usuarios en esce-
narios de aprendizaje.

Fundamentos de BDMA y Principios de Diseño

Behavior-Driven Microservice Architecture (BDMA) se define como un marco metodo
lógico iterativo y reproducible diseñado para sistematizar la identificación, diseño y evolución
de microservicios en proyectos ágiles greenfield. A diferencia de los enfoques heurísticos o
puramente algorítmicos, BDMA no trata la arquitectura como un evento único de planificación
(Big Design Up Front), sino como un flujo continuo que transforma requisitos narrativos en
decisiones estructurales verificables.

Principios Rectores
El marco se fundamenta en cuatro pilares teóricos que garantizan su coherencia

metodológica y su aplicabilidad en contextos de alta incertidumbre:

1.	Trazabilidad Bidireccional: BDMA promueve una trazabilidad total, asegurando que
cada microservicio, contrato de interfaz y decisión arquitectónica pueda rastrearse
explícitamente hasta uno o más escenarios BDD validados (Smart & Molak, 2023).
Esto mitiga la erosión arquitectónica al vincular la solución técnica directamente con
el valor de negocio.

2.	Arquitectura Evolutiva: Basándose en los postulados de (Ford et al., 2022), el marco
asume que la estructura del sistema debe adaptarse iterativamente. Se rechaza la
rigidez de los modelos estáticos en favor de una arquitectura que evoluciona en
sincronía con los cambios funcionales, apoyada por funciones de aptitud (fitness
functions) y validación continua.

3.	Diseño Colaborativo y Lenguaje Ubicuo: El enfoque privilegia la eliminación de silos
entre expertos del dominio y equipos técnicos. Al utilizar escenarios Gherkin como
lingua franca, se refuerza la comprensión compartida y se validan las decisiones de
diseño mediante técnicas colaborativas (Evans, 2004; Vernon, 2016).

4.	Gobernanza Ligera y Evidencia Funcional: BDMA incorpora una gobernanza basa-
da en el registro sistemático de decisiones mediante Architectural Decision Records
(ADR) (Kopp et al., 2018). Asimismo, utiliza las pruebas BDD no solo como validación
de QA, sino como mecanismo activo de verificación de la integridad arquitectónica
(“Spec-as-Test”).

Estructura Procedimental del Marco
El proceso BDMA se organiza en cinco fases secuenciales e iterativas. Cada fase posee

entradas definidas, actividades de transformación y artefactos de salida que alimentan la

111
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

siguiente etapa, garantizando un flujo de trabajo reproducible en cada sprint ágil (ver Tabla 7).

Fase 1: Clasificación Funcional de Escenarios
Objetivo: Esta fase inicial organiza el backlog de escenarios BDD desestructurados

en agrupaciones coherentes que representan Epics o procesos de negocio de alto nivel.
Proceso: Se analizan los escenarios redactados en lenguaje Gherkin (Given-When-Then)
para identificar afinidades semánticas. Esta actividad se fundamenta en los principios de
Continuous Architecture (Woods et al., 2021), donde las decisiones iniciales buscan alinear
la estructura del software con los flujos de valor del negocio.

 TABLA 2: Artefactos de la Fase 1

Entradas Salidas

- Backlog funcional en Gherkin - Mapa de agrupamiento funcional.

- Metainformación contextual (Tags, Epics). - Tabla de trazabilidad preliminar (Epic Escenarios).

Fase 2: Extracción Colaborativa de Elementos del Dominio
Objetivo: Transformar la narrativa de los escenarios agrupados en elemen-

tos técnicos tangibles. Se analizan las sentencias Gherkin para extraer Actores,
Comandos (intenciones del usuario) y Eventos (resultados observables). Proceso:
El conocimiento del dominio provisto por expertos complementa la interpreta-
ción sintáctica. Se utiliza BDD como mecanismo de descripción de comportamien-
to (Smart & Molak, 2023) para identificar entidades candidatas y sus ciclos de vida.

TABLA 3: Artefactos de la Fase 2

Entradas Salidas

- Mapa de agrupamiento funcional (F1). - Mapa de elementos del dominio (Comandos,
Eventos, Entidades).

- Conocimiento tácito de expertos. - Matriz de relación Escenario Elemento.

Fase 3: Delimitación y Formalización de Bounded Contexts Objetivo:
Objetivo:Consolidar los elementos dispersos en Bounded Contexts coherentes, defi-

niendo explícitamente sus límites y las relaciones estratégicas entre ellos.

Proceso: Se emplean técnicas colaborativas como Event Storming para visualizar flujos.
Se aplican patrones estratégicos de DDD para definir la relación entre contextos: Partnership
(colaboración estrecha), Conformist (adhesión estricta) o Anti-Corruption Layer (ACL) para
aislamiento defensivo (Vernon, 2016).

112
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

TABLA 4: Artefactos de la Fase 3

Entradas Salidas

- Mapa de elementos del dominio (F2). - Mapa de Contextos (Context Map) formalizado.

- Restricciones organizacionales. - Declaración de reglas de interacción (ACL,OHS).

Fase 4: Derivación de Interfaces y Contratos API

Objetivo: Traducir los comandos y eventos de cada contexto en contratos de servicio
(APIs) verificables, siguiendo un enfoque Contract-First.

Proceso: Se fundamenta en patrones de diseño de APIs (Zimmermann et al., 2022).
Cada interacción definida en el Mapa de Contextos se especifica como una interfaz técnica
(ej. OpenAPI/AsyncAPI), asegurando que la implementación respete la semántica del negocio.

TABLA 5: Artefactos de la Fase 4

Entradas Salidas

- Mapa de Bounded Contexts (F3). - Especificaciones de Contratos API.

- Escenarios BDD originales. - Pruebas de contrato automatizadas.

Fase 5: Validación Continua y Evolución Controlada

Objetivo: Garantizar la consistencia arquitectónica a lo largo del tiempo, registrando
cambios y verificando la alineación con los requisitos.

Proceso: Se utiliza el registro de ADRs (Kopp et al., 2018) para documentar el “por
qué”de cada cambio estructural. Las pruebas BDD se ejecutan contra los contratos derivados
para validar que la arquitectura sigue soportando los escenarios de negocio.

TABLA 6: Artefactos de la Fase 5

Entradas Salidas

- Contratos API (F4). - Bitácora de ADRs (ADR Log).

- Escenarios BDD actualizados. - Context Map versionado.

113
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

TABLA 7: Resumen del Marco BDMA y Fundamentación Teórica

Fase Concepto Clave Fundamentación Principal

F1 Concepto Clave
Arquitectura alineada a Features/Epics

Fundamentación Principal
Evolutionary Arch. (Ford et al., 2022), Continuous Arch.
(Woods et al., 2021)

F2 BDD para extracción de elementos de
dominio

BDD in Action (Smart & Molak, 2023), Relación BDD-
DDD (Hippchen et al., 2017)

F3 Bounded Contexts y Event Storming DDD (Evans, 2004), Event Storming (Brandolini, 2013)

F4 Diseño de APIs Contract-First API Patterns (Zimmermann et al., 2022)

F5 ADRs y Validación Continua Markdown ADRs (Kopp et al., 2018)

Fases del Proceso Metodológico

La ejecución de BDMA se estructura como un flujo secuencial pero iterativo, diseñado
para reducir progresivamente la incertidumbre arquitectónica. Antes de describir las fases,
es crucial comprender que la delimitación de microservicios no se restringe a trazar fronte-
ras internas, sino que requiere explicitar la gobernanza de las interacciones. Siguiendo los
patrones estratégicos de Domain-Driven Design (Evans, 2004; Vernon, 2016), BDMA clasifica
las relaciones entre contextos para prevenir el acoplamiento accidental.

Durante el proceso, se identifican y formalizan tres tipos de relaciones críticas:

1.	Partnership (Asociación): Dos contextos colaboran de manera simétrica y estrecha.
El fallo en uno impacta inmediatamente al otro, lo que requiere una coordinación
sincrónica entre equipos.

2.	Conformist (Conformista): Un contexto consumidor se adhiere estrictamente al
modelo de datos del proveedor. Aunque simplifica la integración, subordina la evo-
lución del consumidor a las decisiones del proveedor.

3.	Anticorruption Layer (ACL): Un contexto introduce una capa de traducción defensiva
para aislar su modelo de dominio interno de modelos externos inestables o legados.
Este patrón es vital en arquitecturas evolutivas para mantener la pureza del diseño
(Ford et al., 2022).

A continuación, se detallan las cinco fases del marco, describiendo la mecánica de
transformación de artefactos en cada etapa.

Fase 1: Clasificación Funcional de Escenarios
Esta fase organiza el backlog de escenarios BDD validados en agrupaciones cohe-

rentes que representan Epics o procesos de negocio transversales. El objetivo es superar

114
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

la visión fragmentada de las historias de usuario individuales para identificar “zonas de
afinidad”funcional (Erder & Pureur, 2015; Ford et al., 2022).

Las entradas son los escenarios redactados en lenguaje Gherkin (Given-When-Then).
El proceso de clasificación no es meramente sintáctico; implica analizar la metainformación
con-textual para detectar qué escenarios comparten disparadores o estados finales comunes.
La salida principal es el Mapa de Agrupamiento Funcional, un artefacto de referencia que
actúa como hipótesis inicial de los límites del sistema, alineando las decisiones técnicas
tempranas con los objetivos macro del negocio.

Fase 2: Extracción Colaborativa de Elementos del Dominio
Una vez agrupados los escenarios, se procede a la disección técnica de la narrativa.

En esta fase, los escenarios dejan de tratarse solo como requisitos de prueba y pasan a ser
fuentes de minería de conocimiento (Smart & Molak, 2023). Se aplica un análisis semánti-
co —asistido por expertos del dominio— para mapear las sentencias Gherkin a elementos
tácticos de DDD:

•	 Las sentencias When (acciones) se transforman en candidatos a Comandos.

•	 Las sentencias Then (resultados) se identifican como Eventos de Dominio.

•	 Los sustantivos recurrentes en Given emergen como candidatos a Entidades o
Agregados.

Este proceso genera el Mapa de Elementos del Dominio, un artefacto que aporta tra-
zabilidad explícita: cada elemento técnico (ej. un tópico de Kafka o un endpoint REST) tiene
un origen directo en una sentencia de comportamiento validada (Rademacher et al., 2017).

Fase 3: Delimitación y Formalización de Bounded Contexts
Tomando como insumo los mapas de elementos, esta fase consolida los límites

arquitectónicos. Aquí se aplica el principio de alta cohesión y bajo acoplamiento para agru-
par comandos y eventos en Bounded Contexts definitivos.

Se utiliza la técnica de Event Storming (Brandolini, 2013) para visualizar el flujo de even-
tos a través de los grupos funcionales. El resultado es el Context Map, que no solo define qué
funcionalidad pertenece a qué servicio, sino cómo interactúan (Sincrónico vs. Asincrónico) y
bajo qué patrón de gobernanza (Partnership, ACL, etc.) (Vernon, 2013). La formalización en
esta etapa es crítica para detectar dependencias cíclicas antes de escribir código.

Fase 4: Derivación de Interfaces y Contratos API
Con los límites definidos, se procede a la especificación técnica de las fronteras. Los

comandos y eventos identificados se transforman en contratos de interfaz (APIs) siguiendo
un enfoque Contract-First (Zimmermann et al., 2019).

115
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

•	 Los comandos públicos se traducen en especificaciones de API (ej. OpenAPI).

•	 Los eventos de dominio se formalizan en esquemas de mensajería (ej. AsyncAPI/
Avro).

Esta fase asegura que la implementación técnica respete la semántica del negocio. Los
contratos generados sirven doble propósito: documentan la interfaz para los consumidores
y actúan como .especificación ejecutable”para las pruebas automatizadas en la arquitectura
evolutiva (Ford et al., 2022).

Fase 5: Validación Continua y Evolución Controlada
La arquitectura de microservicios no es estática; debe evolucionar. Esta fase institucio-

naliza la gobernanza mediante Architectural Decision Records (ADR) (Kopp et al., 2018).
Cada vez que un escenario BDD cambia o se añade, se evalúa su impacto en los contratos
existentes.

Las salidas de esta fase incluyen bitácoras de decisiones inmutables y versiones
actualizadas del Context Map. Esto habilita una auditoría completa del sistema: ante un
cambio en la implementación, es posible rastrear hacia atrás hasta el ADR que motivó el
cambio, el contrato afectado y el escenario BDD original, cerrando el ciclo de trazabilidad
metodológica (Erder & Pureur, 2015).

Ejemplo de Aplicación: Plataforma de Gestión Científica

Para validar la aplicabilidad del marco BDMA en un escenario de complejidad realista,
se seleccionó como caso de estudio el diseño de una **Plataforma Distribuida para la Gestión
de Publicaciones Científicas**. Este dominio fue elegido por presentar desafíos arquitectó-
nicos típicos de sistemas distribuidos: flujos de trabajo asincrónicos, múltiples actores con
permisos granulares (autores, revisores, editores), reglas de negocio cambiantes (políticas
editoriales) y la necesidad de integración con ecosistemas externos.

Descripción del Escenario y Requisitos
La organización requiere un sistema que gestione el ciclo de vida completo de una

publicación, desde el envío del manuscrito hasta su aceptación final y certificación.

Los requisitos funcionales, capturados inicialmente como Epics, incluyen:
•	 Gestión de Identidad Federada: Registro de investigadores y autenticación segura,

con soporte para perfiles enriquecidos mediante ORCID.

•	 Core Editorial: Soporte para envíos versionados, control estricto de deadlines y ges-
tión de conflictos de interés en la asignación de revisores.

116
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

•	 Procesos de Revisión: Manejo de flujos de revisión ciega (simple o doble) y emisión
de dictámenes editoriales basados en quórum.

•	 Integración y Métricas: Sincronización bidireccional con bases de datos externas
(Scopus, Google Scholar) y generación de reportes de impacto.

Ejecución del Proceso BDMA
Aplicando las fases del marco, se procesó un backlog de escenarios BDD para derivar

la estructura de servicios. La Tabla 8 presenta una muestra representativa de la trazabilidad
generada durante la Fase 3 y 4, vinculando requisitos funcionales con decisiones estructu-
rales y eventos de dominio.

TABLA 8: Matriz de Trazabilidad: Escenarios BDD a Elementos de Arquitectura

Feature / Epic Escenario BDD (Resumido) Bounded Context Eventos/Comandos Clave

Registro y
Autenticación

Registro exitoso con ORCID y
verificación de email

Identity & Access UsuarioRegistrado,
EmailConfirmado

Gestión de Perfil Importar métricas de impacto
desde fuentes externas

Profiles External
Integrations

MetricasSincronizadas,
PerfilActualizado

Envío de
Artículos

Envío válido a evento antes del
deadline

Submissions EnvioRegistrado,
ComprobanteGenerado

Envío de
Artículos

Rechazo automático por envío
fuera de fecha

Submissions EnvioRechazado,
DeadlineExpirado

Asignación de
Revi¬sores

Asignación automática
respetando conflictos de interés

Reviewing RevisoresAsignados,
ConflictoDetectado

Decisión
Editorial

Emisión de decisión basada en
reglas y quórum

Editorial Decisioning DecisionEmitida,
CartaGenerada

Integraciones
Externas

Validación de DOI y metadatos
al registrar envío

External Integrations DOIValidado,
MetadatosCompletos

Arquitectura Emergente y Mapa de Contextos

Como resultado de la Fase 3 (Delimitación), se identificaron ocho Bounded Contexts
con responsabilidades segregadas: Identity & Access, Profiles, Submissions, Reviewing,
Editorial Decisioning, Venue Management, Metrics & Reporting y External Integrations.

La Figura 2 ilustra el Mapa de Contexto derivado. Es crucial notar cómo BDMA prescribió
los patrones de interacción para proteger la integridad del dominio:

1.	Anticorruption Layer (ACL) en Integraciones: El contexto Profiles consume datos
de External Integrations mediante una ACL. Esto aísla el modelo interno de perfiles
de los cambios frecuentes en las APIs de terceros (ORCID, Scopus), garantizando
estabilidad evolutiva (Ford et al., 2022).

117
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

2.	Open Host Service (OHS) en Gestión de Sedes: Venue Management expone sus
reglas (fechas, políticas) como un servicio público estandarizado (ReglasPublicadas),
permitiendo que Submissions y Reviewing consuman estas reglas sin acoplarse a la
lógica interna de configuración de eventos.

3.	Partnership (PAR) en el Núcleo: Se estableció una relación de asociación entre
Submissions y Reviewing. Dado que el ciclo de vida de una revisión depende
intrínsecamente de la versión del manuscrito enviado, ambos equipos deben coor-
dinar estrechamente sus cambios de esquema para mantener la consistencia del
flujo EnvioRegistrado RevisionIniciada.

4.	

5.	

6.	

Fgura 2: Mapa de contexto resultante de la primera iteración BDMA, explicitando patrones estratégicos (ACL,
OHS, PAR) para gobernar las interacciones entre microservicios.

La combinación de la matriz de trazabilidad (Tabla 8) y el mapa estratégico (Figura
2) evidencia que BDMA no solo identifica çajas”de servicios, sino que define la semántica
de sus relaciones, produciendo una arquitectura verificable y coherente con los requisitos
funcionales desde la primera iteración.

Validación Empírica

Para evaluar la efectividad y aplicabilidad del marco BDMA, se diseñó un estudio empí-
rico de carácter exploratorio en un contexto académico controlado. El objetivo principal fue

118
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

medir el impacto del uso de un método estructurado frente a enfoques ad-hoc en la calidad
percibida del diseño arquitectónico y la comprensión del dominio.

Participantes y Demografía
El estudio contó con la participación de N=28 profesionales matriculados en un pro-

grama de posgrado en Arquitectura de Software. La muestra presentó una heterogeneidad
relevante para el estudio:

•	 Perfil Profesional: Predominancia de desarrolladores senior y líderes técnicos de
la industria TI.

•	 Experiencia Previa: Mediante una encuesta de caracterización (escala 0–5), se
identificó un nivel alto en metodologías ágiles (µ = 4.2) y patrones de diseño (µ =
3.9), pero una experiencia limitada en BDD (µ = 1.8) y diseño de microservicios dis-
tribuidos (µ = 2.1).

Esta configuración demográfica es representativa de equipos de transición en la indus-
tria: profesionales competentes en monolitos que enfrentan la curva de aprendizaje de sis-
temas distribuidos.

Diseño Experimental
Se empleó un diseño cuasi-experimental intra-sujeto con medidas repetidas. Los partici

pantes se organizaron en equipos y abordaron el mismo problema de diseño (la plataforma
de gestión científica descrita en la Sección 6) en dos fases consecutivas:

1.	Fase de Control (Sin BDMA): Los equipos diseñaron la solución utilizando su conoci
miento previo y herramientas estándar de DDD (diseño táctico libre), sin una guía
procedimental específica.

2.	Fase Experimental (Con BDMA): Se introdujo el marco metodológico. Los equipos
refactorizaron su solución aplicando secuencialmente las cinco fases de BDMA,
generando los artefactos prescritos (Mapas de Agrupamiento, Tablas de Elementos,
Contratos API y ADRs).

Instrumentos de Recolección de Datos
Tras completar la fase experimental, se administró un cuestionario de percepción basado

en el Modelo de Aceptación Tecnológica (TAM), utilizando una escala Likert de 5 puntos para
evaluar dimensiones de utilidad, facilidad de uso y mejora en la calidad del diseño. Adicional
mente, se recolectaron respuestas abiertas para análisis cualitativo.

119
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Análisis de Resultados y Discusión

En esta sección se presentan e interpretan los hallazgos derivados del estudio empírico
realizado con los 28 profesionales participantes. El análisis se ha estructurado para triangular
la evidencia desde múltiples perspectivas, permitiendo una evaluación holística del impacto
del marco BDMA en el proceso de diseño. A continuación, se desglosan los resultados en dos
dimensiones principales: una evaluación cuantitativa basada en las métricas de percepción de
utilidad y facilidad de uso, y un análisis cualitativo de la retroalimentación abierta, concluyendo
con una discusión crítica sobre las implicaciones y las amenazas a la validez del estudio.

Resultados Cuantitativos
El análisis estadístico descriptivo de las respuestas (Tabla 9) revela una aceptación

altamente positiva del marco.

TABLA 9: Resultados de la encuesta de validación (N=28)

Dimensión Evaluada Media DE Min Max

Comprensión del Dominio (Utilidad del enfoque sistemático) 4.75 0.44 4 5

Razonamiento sobre Comportamiento (Uso de BDD) 4.68 0.47 4 5

Soporte a la Decisión (Guía paso a paso) 4.57 0.69 3 5

Precisión en la Identificación de Servicios 4.46 0.74 3 5

Percepción de Mantenibilidad 4.50 0.63 3 5

Reflexión Arquitectónica (Comparativa A/B) 4.57 0.50 4 5

Los valores medios superiores a 4.45 en todas las dimensiones, con desviaciones
estándar bajas (< 0.75), indican un fuerte consenso sobre la utilidad de BDMA. Destaca
especialmente la mejora en la Comprensión del Dominio (µ = 4.75), lo que sugiere que
la fase de clasificación y extracción de elementos (Fases 1 y 2) es efectiva para reducir la
ambigüedad de los requisitos iniciales.

Análisis Cualitativo
En las respuestas abiertas, los participantes señalaron que el marco actúa como un

“mecanismo de ordenamiento cognitivo”. La obligatoriedad de generar artefactos intermedios
(como el mapa de elementos del dominio) forzó a los equipos a discutir detalles que habían
pasado por alto en la fase de control. Como contraparte, se identificó una curva de aprendi-
zaje inicial en la adopción de la sintaxis Gherkin y en la distinción entre Comando y Evento,
lo que sugiere la necesidad de herramientas de soporte o capacitación previa.

Discusión y Amenazas a la Validez
Los resultados sugieren que BDMA es particularmente eficaz para cerrar la brecha de

conocimiento en equipos que transicionan hacia microservicios. Al comparar las soluciones

120
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

de la Fase 1 vs. Fase 2, se observó que los diseños guiados por BDMA presentaban límites
de servicio más cohesivos y un uso más explícito de patrones de comunicación (ACL, OHS),
reduciendo el acoplamiento accidental.

Amenazas a la Validez:

•	 Validez Interna: El diseño intra-sujeto podría introducir un efecto de aprendizaje (los
participantes entendían mejor el problema en la segunda fase). Sin embargo, el salto
cualitativo en la documentación de decisiones (ADRs) es atribuible directamente al
método.

•	 Validez Externa: Al tratarse de un entorno académico con un problema de juguete
(toy problem), la generalización a proyectos industriales de gran escala con deuda
técnica heredada debe tomarse con cautela.

•	 Validez de Constructo: Las métricas se basan en percepción subjetiva. Futuros
estudios deberán incorporar métricas objetivas de arquitectura (ej. métricas de aco-
plamiento estructural).

Conclusiones y Trabajo Futuro

Este trabajo ha presentado Behavior-Driven Microservice Architecture (BDMA), un
marco metodológico diseñado para abordar la complejidad inherente al diseño de sistemas
distribuidos en escenarios greenfield. A través de un proceso iterativo de cinco fases, BDMA
operacionaliza la integración de DDD y BDD, transformando la incertidumbre de los requisitos
funcionales en una arquitectura verificable y trazable.

Las contribuciones principales radican en: (1) la formalización de un proceso reproducible
que elimina la dependencia exclusiva de la intuición del arquitecto experto; (2) la definición
de un conjunto de artefactos intermedios que aseguran la alineación continua entre negocio
y tecnología; y (3) evidencia empírica preliminar que demuestra su eficacia pedagógica y
práctica para mejorar la cohesión del diseño.

Implicaciones para la Automatización
Un hallazgo colateral significativo es que la estructura sistemática de BDMA lo convierte

en un candidato ideal para la automatización. Al estandarizar las entradas (Gherkin) y las
salidas (Contratos, Mapas), el marco sienta las bases para el desarrollo de agentes inteligen-
tes. Futuras investigaciones explorarán el uso de Modelos de Lenguaje Grande (LLMs) para
ejecutar las fases de extracción y clasificación de BDMA de manera autónoma, utilizando
este marco metodológico como el .andamiaje”de razonamiento para la IA.

121
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Líneas de Trabajo Futuro
La agenda de investigación se expande en las siguientes direcciones:

•	 Validación Industrial: Ejecutar estudios de caso longitudinales en empresas de
desarrollo de software para evaluar el impacto de BDMA en el Time-to-Market y la
tasa de defectos arquitectónicos.

•	 Métricas Objetivas: Desarrollar un modelo de calidad cuantitativo que mida automáti
camente el acoplamiento y la cohesión de los diseños generados por BDMA.

•	 Herramientas de Soporte: Construir una herramienta CLI o plugin de IDE que asista
a los desarrolladores en la generación de los artefactos del marco, reduciendo la
fricción manual.

Referencias
Bajaj, D., Bharti, U., Gupta, I., Gupta, P., & Yadav, A. (2024). GTMicro—Microservice identification

approach based on deep NLP transformer model for greenfield developments. International Journal
of Information Technology, 16(5), 2751-2761.

Bajaj, D., Goel, A., & Gupta, S. C. (2022). GreenMicro: identifying microservices from use cases in
greenfield development. IEEE Access, 10, 67008-67018.

Battaglia, N., García, A. N., & Congiusti, A. (2024). Descubrimiento de Microservicios en Metodologías
Ágiles: un mapeo sistemático de la literatura. XXX Congreso Argentino de Ciencias de la
Computación (CACIC)(La Plata, 7 al 11 de octubre de 2024).

Brandolini, A. (2013). Introducing event storming. blog, Ziobrando’s Lair, 18.

Cardoso, J. P. S. (2021). A guide for microservices in greenfield projects [Tesis de maestría, Instituto
Politecnico do Porto (Portugal)].

Cervantes, H., & Kazman, R. (2024). Designing software architectures: a practical approach. Addison-
Wesley Professional.

Erder, M., & Pureur, P. (2015). Continuous architecture: sustainable architecture in an agile and cloud-
centric world. Morgan Kaufmann.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software. Addison-Wesley
Professional.

Ford, N., Parsons, R., Kua, P., & Sadalage, P. (2022). Building evolutionary architectures. .
O
’Reilly

Media, Inc.”

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum
impact. MIS quarterly, 337-355.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of
information systems, 19(2), 4.

122
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly, 75-105.

Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., & Abeck, S. (2017). Designing
microservicebased applications by using a domain-driven design approach. International Journal
on Advances in Software, 10(3&4), 432-445.

Josélyne, M. I., Tuheirwe-Mukasa, D., Kanagwa, B., & Balikuddembe, J. (2018). Partitioning
microservices: A domain engineering approach. Proceedings of the 2018 International Conference
on Software Engineering in Africa, 43-49.

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., & Banerjee, D. (2021). Mono2micro: a
practical and effective tool for decomposing monolithic java applications to microservices.
Proceedings of the 29th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, 1214-1224.

Kopp, O., Armbruster, A., & Zimmermann, O. (2018). Markdown Architectural Decision Records:
Format and Tool Support. ZEUS, 55-62.

Lewis, J., & Fowler, M. (2014). Microservices: a definition of this new architectural term. MartinFowler.
com, 25(14-26), 12.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology.
Decision support systems, 15(4), 251-266.

Narváez, D., Battaglia, N., Fernández, A., & Rossi, G. (2025). Designing microservices using ai: A
systematic literature review. Software, 4(1), 6.

Newman, S. (2021). Building microservices: designing fine-grained systems. .
O
’Reilly Media, Inc.”

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of management information systems,
24(3), 45-77.

Ponce, F., Soldani, J., Astudillo, H., & Brogi, A. (2022). Smells and refactorings for micro-services
security: A multivocal literature review. Journal of Systems and Software, 192, 111393.

Pries-Heje, J., Baskerville, R., & Venable, J. (2008). Evaluation risks in design science research: A
framework. Proceedings from the 3rd International Conference on Design Science Research in IT,
May 2008, Atlanta, Georgia, USA, 329-334.

Rademacher, F., Sachweh, S., & Zündorf, A. (2017). Towards a UML profile for domain-driven
design of microservice architectures. International Conference on Software Engineering and
Formal Methods, 230-245.

Schmidt, R. A., & Thiry, M. (2020). Microservices identification strategies: A review focused on Model-
Driven Engineering and Domain Driven Design approaches. 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI), 1-6.

Smart, J. F., & Molak, J. (2023). BDD in Action: Behavior-driven development for the whole software
lifecycle. Simon; Schuster.

Taibi, D., & Lenarduzzi, V. (2018). On the definition of microservice bad smells. IEEE software, 35(3),
56-62.

123
ISSN 2591-5320
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 102-123
Behavior-Driven Microservice Architecture: A Methodological Framework for Iterative ...
Battaglia, N., Rossi, G., Fernández , A., & Narváez, D.

Ünlü, H., Kennouche, D. E., Soylu, G. K., & Demirörs, O. (2024). Microservice-based projects in agile
world: A structured interview. Information and Software Technology, 165, 107334.

Vera-Rivera, F. H., Cuadros, E. G. P., Perez, B., Astudillo, H., & Gaona, C. (2023). SEM-GROMI—a
semantic grouping algorithm to identifying microservices using semantic similarity of user stories.
PeerJ Computer Science, 9, e1380.

Vera-Rivera, F. H., Puerto-Cuadros, E. G., Astudillo, H., & Gaona-Cuevas, C. M. (2020). Microservices
backlog-a model of granularity specification and microservice identification. International
Conference on Services Computing, 85-102.

Vernon, V. (2013). Implementing domain-driven design. Addison-Wesley.

Vernon, V. (2016). Domain-driven design distilled. Addison-Wesley Professional.

Wieringa, R. (2014). Design science methodology for information systems and software engineering.
Springer.

Woods, E., Erder, M., & Pureur, P. (2021). Continuous architecture in practice: Software architecture in
the age of agility and DevOps. Addison-Wesley Professional.

Zhong, C., Li, S., Huang, H., Liu, X., Chen, Z., Zhang, Y., & Zhang, H. (2024). Domaindriven design
for microservices: An evidence-based investigation. IEEE Transactions on Software Engineering,
50(6), 1425-1449.

Zimmermann, O., Stocker, M., Lubke, D., Zdun, U., & Pautasso, C. (2022). Patterns for API design:
simplifying integration with loosely coupled message exchanges. Addison-Wesley Professional.

Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., & Zdun, U. (2019). Introduction to microservice
API patterns (MAP).

