ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Aplicacion de Inteligencia Atrtificial Generativa y Verificacion Formal ...
Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Aplicacion de Inteligencia Artificial Generativa
y Verificacion Formal en el Descubrimiento de
Microservicios

Generative Al and Formal Verification in
Microservice Discovery

Daniel Narvaez

Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. Keiser University
Campus Latinoamericano — Facultad de Ingenieria de Software San Marcos, Departamento de
Carazo, Nicaragua.

Nicolas Battaglia
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.

Alejandro Fernandez
LIFIA, Facultad de Informatica, Universidad Nacional de La Plata (UNLP), Argentina.

Gustavo Rossi
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. LIFIA, Facultad de
Informatica, Universidad Nacional de La Plata (UNLP), Argentina.

DOI https://doi.org/10.59471/raia2025225

Enviado: junio 2025. Aceptado: octubre 2025. Publicado: diciembre 2025

Como citar: Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G. (2025). Aplicacion de Inteligencia Atrtificial Ge-
nerativa y Verificacion Formal en el Descubrimiento de Microservicios. Revista Abierta De Informatica Aplicada,
9(1). https://doi.org/10.59471/raia2025225

Resumen

El disefio de microservicios a partir de requisitos textuales constituye un desafio persis-
tente en la ingenieria de software, debido a la ambigliedad del lenguaje natural y a la ausencia
de mecanismos formales que garanticen calidad arquitectdnica. En el marco de una inves-
tigacion doctoral en la Universidad Abierta Interamericana (UAl), se presenta ArchiGenMS,
un pipeline evolutivo que combina modelos de lenguaje generativos (LLMs) con verificacién
formal en Lean para el descubrimiento automatico de microservicios. La propuesta integra
prompt engineering evolutivo, métricas estructurales de cohesion, granularidad y acoplamien-
to, y validacion automatica de restricciones arquitectdnicas. Los experimentos realizados
con datasets publicos de historias de usuario, como el caso g24-unibath, muestran que el
enfoque permite generar arquitecturas con alta cohesién (LCOMaVg = 0.167), granularidad
controlada (SGM, , = 4) y bajo acoplamiento (Coupling, . = 1). Los resultados evidencian el
potencial de integrar técnicas generativas y verificacién formal para construir arquitecturas
mantenibles y reproducibles en escenarios greenfield.

{Bﬂ-]_ Este trabajo estd bajo una Licencia Creative Commons Atribucién 4.0 Internacional

https://doi.org/10.59471/raia2025225
https://doi.org/10.59471/raia2025225

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

PALABRAS CLAVES: Microservicios, descubrimiento automatico, modelos de lenguaje grandes,
verificacién formal, Lean Theorem Prover, métricas arquitecténicas, prompt engineering
evolutivo, ingenieria de software asistida por IA.

Abstract

The 1918 University Reform, initiated at the National University of Cérdoba, marked
a milestone in higher education in Latin America. It emerged in a context of political and
social transformations, driven by students seeking to dismantle the elitist, clerical, and
authoritarian university model. It promoted university autonomy, student participation in
governance, academic freedom, and the extension of knowledge to society. Although the
reform originated in Argentina, its ideals influenced other countries, particularly Chile, where
similar movements emerged. Its legacy endures today, as evidenced by the reinstatement of
student shared governance at the University of Santiago, Chile, in 2025.

KEYWORDS: University Reform, Student Movements, Autonomy, Academic Freedom, Latin
American Education.

INTRODUCCION

La ingenieria de software contemporanea enfrenta una tensién fundamental: la nece-
sidad de desarrollar sistemas escalables y mantenibles a gran velocidad (Newman, 2021),
frente a la exigencia de garantizar rigor arquitecténico y robustez estructural (E. M. Clarke
& Wing, 1996). Las arquitecturas de microservicios se han consolidado como la respuesta
predominante a los requerimientos de escalabilidad y despliegue independiente (Velepucha
& Flores, 2023), impulsadas por entornos cloud donde las organizaciones requieren iterar
rapidamente (Taibi, Lenarduzzi & Pahl, 2017).

Sin embargo, esta transicion expone una contradiccion metodoldgica central. La agili-
dad, como paradigma dominante, desalienta el disefio arquitecténico inicial exhaustivo (Big
Design Upfront). No obstante, los microservicios exigen decisiones de disefio estratégicas y
correctas desde el inicio para ser exitosos. La evidencia empirica confirma que la complejidad
de estos sistemas demanda un esfuerzo de planificacion que a menudo entra en friccién
con las practicas agiles tradicionales (Taibi, Lenarduzzi, Pahl & Janes, 2017), llevando a los
equipos a aplicar métodos de estimacion subjetivos no adaptados a la naturaleza distribuida
del paradigma (Unlii et al., 2024).

El desafio fundamental no reside en la implementacion de servicios individuales, sino en
el proceso de descubrimiento: decidir como particionar una aplicacién compleja en componen-
tes autébnomos. Este reto se magnifica en los escenarios greenfield (desarrollo desde cero),
foco de este trabajo. A diferencia de la migracion brownfield, donde existen artefactos estruc-
turales observables como codigo o trazas (Kalia et al., 2021), el disefio greenfield depende
exclusivamente de requisitos textuales fragmentados y ambiguos, tales como historias de
usuario (Vera-Rivera et al., 2023).

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

La literatura industrial identifica los “cortes incorrectos” (Wrong Cuts) como una de las
principales causas de fracaso. Una particion deficiente puede derivar en un “monolito distri-
buido”: un sistema que sufre la rigidez del acoplamiento monolitico sumada a la latencia y
fragilidad de la red (Taibi, Lenarduzzi & Pahl, 2017). Estos errores tempranos se manifiestan
como olores arquitecténicos (architectural smells), tales como God Services o granularidad
suboptima, que anulan los beneficios de escalabilidad esperados (Neri et al., 2020).

Para asistir esta actividad critica, la Inteligencia Artificial (IA) y los Modelos de Lenguaje
de Gran Escala (LLMs) han mostrado un potencial disruptivo. Sin embargo, las soluciones
actuales presentan limitaciones metodolégicas significativas:

1. La falacia de la similitud semantica: Enfoques como SEMGROMI (Vera-Rivera et
al., 2023) o GreenMicro (Bajaj et al., 2022) asumen que la similitud textual implica
cohesion funcional. Investigaciones recientes demuestran que, debido a la anisotro-
pia de los embeddings, términos funcionalmente opuestos pueden distanciarse en
el espacio vectorial, llevando a particiones erroneas (Pérez et al., 2025).

2. La brecha de la plausibilidad: Los LLMs generan salidas que parecen correctas
sintacticamente pero a menudo violan principios estructurales (referencias circulares,
acoplamiento oculto). Carecen de un mecanismo de grounding formal (Esposito et
al., 2025).

La literatura reciente, incluyendo nuestro mapeo sistematico preliminar (Narvaez et
al., 2024) y la revision sistematica ampliada publicada en Software (Narvaez et al., 2025a),
advierte que aunque los LLMs muestran potencial disruptivo, carecen de mecanismos de
grounding formal. Para abordar este vacio, esta investigacion adopta el marco de Design
Science Research (DSR) (Hevner et al., 2004) y propone ArchiGenMS, un artefacto que
implementa un ciclo de generar-verificar. Nuestra propuesta integra la capacidad exploratoria
de los LLMs con la validacion rigurosa de los métodos formales. A diferencia de enfoques
puramente heuristicos, ArchiGenMS utiliza el asistente de pruebas Lean 4 (Moura & Ullrich,
2021) como un oraculo formal que evalta cada candidato mediante métricas computables
de cohesién (LCOM), granularidad (SGM) y acoplamiento (Fan-Out) (Al-Debagy & Martinek,
2020). De este modo, la verificacion formal no actia como una validacion tardia, sino como
un motor que guia la busqueda evolutiva hacia disefios estructuralmente consistentes.

El resto del articulo esta organizado de la siguiente manera: La Seccién 2 revisa
criticamente el estado del arte y expone las limitaciones de los enfoques heuristicos actua-
les. La Seccion 3 establece el marco tedrico, formalizando las métricas arquitectonicas y el
modelo matematico subyacente. La metodologia propuesta, incluyendo la arquitectura de
ArchiGenMS y los algoritmos evolutivos, se detalla en la Seccién 4. El disefio experimental
y el protocolo de validacién se describen en la Seccién 5, seguidos por el analisis de los
resultados empiricos cuantitativos y cualitativos en la Seccién 6. Finalmente, la Seccion 7

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

interpreta los hallazgos en el contexto de las hipoétesis planteadas, y la Seccién 8 resume
las aportaciones y delinea las lineas de investigacion futura.

Estado del Arte y Motivacién

El disefio de microservicios asistido por |A se sitia en la interseccién de la ingenieria
de software empirica, la optimizacion metaheuristica y los métodos formales. A continuacion,
desglosamos el estado del arte desde la practica industrial hasta las fronteras de la investi-
gacion generativa, identificando los vacios que motivan nuestra propuesta.

La Brecha entre Teoria y Practica Industrial

Aunque la literatura prescribe principios claros como el desacoplamiento y la autono-
mia, la evidencia empirica revela que la adopcién industrial de microservicios sigue siendo
predominantemente manual y heuristica. Estudios recientes confirman que, si bien el Domain-
Driven Design (DDD) es el enfoque metodoldgico preferido, su aplicacion es abstracta y
depende criticamente de la pericia de arquitectos senior (Zhong et al., 2024).

En contextos agiles, esta dependencia crea un cuello de botella: los equipos a menudo
recurren a notaciones de disefio orientadas a objetos (OOAD) obsoletas o a talleres colabo-
rativos informales como Event Storming (Battaglia et al., 2024). Esta falta de sistematizacion
deriva frecuentemente en descomposiciones subdptimas, conocidas como “cortes incorrectos”
(Wrong Cuts), que son la causa raiz de la deuda técnica arquitectonica (Taibi, Lenarduzzi,
Pahl & Janes, 2017).

El Diseiio como Problema de Optimizacion (SBSE)

Desde una perspectiva tedrica, el descubrimiento de microservicios es una instancia del
problema de modularizacion de software, el cual es computacionalmente intratable (NP-hard)
(Mitchell & Mancoridis, 2008). La disciplina de la Ingenieria de Software Basada en Busqueda
(SBSE) aborda este desafio reformulandolo como un problema de optimizacion (Harman et
al., 2012).

Los enfoques tradicionales de SBSE utilizan algoritmos genéticos para optimizar métri-
cas de cohesién y acoplamiento sobre grafos de dependencia estatica (codigo fuente). Sin
embargo, estos métodos son inaplicables en escenarios greenfield donde no existe cédigo.
ArchiGenMS extiende este paradigma al sustituir los operadores de mutacién sintactica
tradicionales por un operador de variacion semantica basado en LLMs, permitiendo aplicar
SBSE directamente sobre el espacio de requisitos textuales.

Limitaciones de los Enfoques Basados en NLP Clasico
Para abordar el disefio greenfield, han surgido propuestas que aplican Procesamiento
de Lenguaje Natural (NLP) sobre historias de usuario, como SEMGROMI (Vera-Rivera et

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

al., 2023) o GTMicro (Bajaj et al., 2024). Estos sistemas agrupan requisitos basandose en
la similitud de vectores de palabras (embeddings).

Sin embargo, estos enfoques se fundamentan en una heuristica problematica: asumen
que la similitud semantica es un proxy suficiente de la cohesion funcional. Como demuestran
Pérez et al. (Pérez et al., 2025), esta asuncién es defectuosa debido a la anisotropia en los
espacios de embeddings. En un espacio vectorial anisotropico, las representaciones de
términos funcionalmente opuestos (ej. “Crear” vs. “Borrar”) pueden distanciarse significativa-
mente, llevando a algoritmos de clustering a separar operaciones que deberian pertenecer al
mismo microservicio (alta cohesién légica), o a agrupar erréneamente términos léxicamente
cercanos pero funcionalmente independientes.

IA Generativa y la Brecha de Verificabilidad

La irrupcion de los LLMs ha permitido superar la rigidez del clustering. Estudios
explo-ratorios con ChatGPT muestran que los LLMs pueden realizar razonamiento abduc-
tivo para proponer arquitecturas complejas (Stojanovic & Lazarevié, 2023). No obstante,
estos modelos operan bajo un paradigma de plausibilidad probabilistica, no de correc-
cion logica. Revisiones recientes advierten que los LLMs son propensos a “alucinaciones
arquitectoni—cas”: invencion de dependencias, violacion de granularidad o creacion de refe-
rencias circulares (Esposito et al., 2025). Existe, por tanto, una brecha de verificabilidad: la
capacidad de ge~nerar disefios ha superado la capacidad de validarlos automaticamente.
ArchiGenMS aborda este vacio integrando un oraculo formal que evalua la correccién estruc-
tural de las propuestas generativas antes de que sean aceptadas.

Justificacion de la Verificacion Formal Estatica

Para mitigar los riesgos de la generacion estocastica, es necesario un mecanismo de
validacion riguroso. En la literatura de métodos formales, existen dos familias principales: el
Model Checking (ej. TLA+, Alloy), orientado a verificar propiedades temporales y de concu-
rrencia; y los Asistentes de Prueba (ej. Lean, Coq), orientados a la demostracion matematica
y el calculo funcional (E. Clarke et al., 1999).

Dado que nuestro objetivo es validar la calidad estructural estatica (cohesion, acopla-
miento, granularidad) y no el comportamiento dinamico en tiempo real, adoptamos Lean 4
como validador computable (Moura & Ullrich, 2021). A diferencia de un model checker que
explora espacios de estados exponenciales, Lean permite definir las métricas arquitectoni-
cas como funciones totales y verificar invariantes (como la irreflexividad de las llamadas) de
manera determinista y eficiente (< 4s por individuo), haciéndolo ideal para integrarse en el
bucle interno de un algoritmo evolutivo.

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Fundamentacion Teorica y Formalizacion Matematica

La validacion de arquitecturas generadas por |IA requiere un marco de referencia rigu-
roso que trascienda las descripciones en lenguaje natural. En esta seccion, establecemos
las bases matematicas del modelo arquitecténico, formalizamos las métricas de calidad
como funciones computables y definimos las propiedades algebraicas que garantizan la
consistencia de la evaluacion.

Preliminares y Notacion
Para garantizar la precision en la definicion de las métricas, fijamos la siguiente notacién
basada en la teoria de conjuntos elemental y teoria de grafos (Gross et al., 2018):

= Denotamos por & al conjunto finito de microservicios v por ¢, al conjunto finito d

operaciones del microservicio s € .5,
= Usamos |[X| para denotar la cardinalidad de un conjunto finito X.
= Definimos las funciones de agregacion sobre ¢l conjunto de servicios como.

7 E His), maxiu) =|s|_!u} pis), sumiu) = Z JITESR

avglu) =
| SE e

Modelo Formal de la Arquitectura
Modelamos una arquitectura de microservicios candidata como una estructura de grafo
dirigido y rotulado. Definimos la tupla ¢ como:

(’//2 (S,E,O,P) (1)
Donde:

m 5 es el conjunto de vértices que representan los servicios,

m EC {(5.5;) €5 %55 # 55} es el conjunto de aristas dirigidas. representando Namadas

remotas,
s 85— Z2(0p) asigna a cada servicio su conjunto de operaciones.
m P Op — 22 (FParam) asigna a cada operacion su firma de pardmetros.
Formalizacién de Métricas Estructurales

Basandonos en los marcos de evaluacion de microservicios establecidos por (Taibi &
Systa, 2019) y (Al-Debagy & Martinek, 2020), formalizamos las métricas como funciones

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

totales computables sobre el grafo arquitecténico A . Esta formalizacién es necesaria para garan-
tizar que el célculo sea determinista dentro del asistente de pruebas Lean 4.

Cohesién (LCOM Normalizado)

Adaptamos la métrica Lack of Cohesion of Methods para evaluar la cohesion interna.
Para un servicio s, sean Ps y Pns los conjuntos de pares de operaciones que comparten y
no comparten parametros, respectivamente. Definimos:

0.0 i |0(s)| <2
LCOM(s) = 1Bl (2)

TPl +1F] en olro caso
RE X

Esta definicion normalizada LCOM € [0, 1] es consistente con la implementacion en Lean 4,
donde se manejan explicitamente los casos degenerados para garantizar la wtalidad de la fun-

Clon.

Granularidad y Dispersion (SGM)
Evaluamos el tamafio funcional (SGM) y la consistencia interna de las interfaces
(SGMSD) utilizando la desviacion estandar poblacional:

SGM(s) = |O(s)| (3)

o i . "
SGMenls) = Jl"l}{-ﬂl ﬂ.__;:] (|Ple)| — .up:' 4)

Donde pp es el promedio de parimetros por operacion en el servicio s,

Acoplamiento (Fan-Out)
El acoplamiento se define estrictamente como el grado de salida (dout) en el grafo de
llamadas inducido:

Coupling(s) = |{re§|(s.1) e E}| (3)

Funcion de Aptitud Agregada

La busqueda evolutiva minimiza una funcién de aptitud escalar F (G) que agrega
las mé-tricas individuales. Para garantizar la comparabilidad con los experimentos previos
(Narvaez et al., 2025b), definimos los operadores de agregacién como:

avg(p) = |S]

Eu[:r]. nmx[n}=t}2?u[s]. mun[,u}=z,u[£]

¥l yeN

ISSN 2591-5320
Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24

Generative Al and Formal Verification in Microservice Discovery...
Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

La funcién objetivo final se compone linealmente sin pesos arbitrarios, facilitando el
analisis de sensibilidad:

F(F) = avg(LCOM) + max(SGM) + sum(5GMsp) + max(Coupling) (6)

Trazabilidad del Computo: Un Ejemplo Constructivo
Para ilustrar la naturaleza determinista del oraculo formal, presentamos un micro-caso
de trazabilidad completa, desde la representacion del genotipo hasta el calculo de la aptitud.

1. Entrada (Genotipo }’)): Considérese un sistema con tres servicios definido por el
LLM:

= UserService (5)): 3 operaciones (@), 0p. 010)

* ogluser, pass). oy user, data) comparten param ‘user’

* oy.(ticker) no comparte |m|d;| con los anteriores,

» AuthService (5;): 2 operaciones que comparten ‘user’.
» DataService (S3): 1 operacion aislada.
= Llamadas: 8§ — 53, 8] —+ 83, 5 — §3.
2. Computo en Lean:
= Para S1: |Og | = 3. Pares posibles: 3. Comparten: | (014.015). No comparten: 2.
2
LCOM($y) = 57— = 0.667
m Para 850 |Og| = 2. Pares: |. Comparten: 1. No comparten: 0.
. , 0
LCOM(S2) = 5 =0.000
= Para 83 |Og3| = 1. Caso degenerado.

LCOM(S3) = 0.000

1 Si bien en este articulo se aborda el caso particular de la Universidad de Santiago de Chile (USACH), existen otras universidades chilenas que
han incursionado en la participacion triestamental en la eleccién de sus autoridades durante los tltimos arios.

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

3. Agregacion:

0.667 < 0.0 + 0.0
LCOMpyg = —— - =0.222

Conplingpa = mix{d™*(5)).d7(85:).d%(5)) = mix(2.1.0) =2

Este proceso demuestra que el calculo de la funcion de aptitud F es una transformacion
determinista y auditable del grafo arquitecténico, libre de la subjetividad de las métricas
basadas en similitud semantica pura.

Metodologia: El Pipeline ArchiGenMS

Para abordar los desafios de plausibilidad y correccion estructural, disefiamos
ArchiGenMS, un artefacto que implementa un ciclo de Generar-Verificar iterativo. La meto-
dologia se fundamenta en la Ingenieria de Software Basada en Busqueda (SBSE) (Harman et
al., 2012), tratando el disefio arquitecténico como un problema de optimizaciéon combinatoria
NP-hard (Mitchell & Mancoridis, 2008).

A diferencia de enfoques previos que utilizan algoritmos genéticos tradicionales sobre
codigo existente, ArchiGenMS opera sobre requisitos textuales y utiliza un Modelo de
Lenguaje (LLM) como operador de variacion semantica.

Arquitectura del Sistema
El sistema se compone de dos subsistemas desacoplados (Ver Figura 1):

1. El Orquestador (Python): Gestiona el ciclo de vida evolutivo, mantiene el estado
de la poblacion y construye los prompts dinamicos.

2. El Verificador (Lean 4): Un componente stateless compilado que actua como
oraculo determinista. Recibe un genotipo (JSON), valida invariantes y computa
métricas con precision de punto flotante.

FIGURA 1: Arquitectura del Pipeline Evolutivo. Los LLMs generan
candidatos que son filtrados y evaluados por el verificador formal Lean 4
antes de la seleccién.

10

ISSN 2591-5320
Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24

Generative Al and Formal Verification in Microservice Discovery...
Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Estrategia de Prompt Engineering Evolutiva
La calidad de la generacion depende criticamente del contexto provisto al LLM.
Implementamos una estrategia de Prompting Dual para mitigar la deriva semantica:

Fase 1: Inicializacién (Zero-Shot)

Para la generacion g =0, se inyectan los requisitos crudos Ry se impone una restriccion
gramatical estricta (JSON Schema) para garantizar que la salida sea serializable. El objetivo
es maximizar la diversidad inicial del espacio de busqueda.

Fase 2: Variaciéon (Few-Shot con Contexto)
Para g > 0, el sistema construye un Inspiration Prompt. En lugar de realizar un cruce
de bits aleatorio (que destruiria la semantica), inyectamos:

¢ Genotipo Padre (Gparent): La arquitectura seleccionada en la ronda anterior.

¢ Inspiraciones (lbest): Un conjunto de k = 3 soluciones de alta aptitud recuperadas
de la historia evolutiva.

El LLM actia como un operador de mutacion inteligente: “lee” la solucion padre y los
ejemplos de excelencia, y genera una nueva variante que intenta optimizar la estructura
respetando el dominio.

Algoritmo de Orquestacion (u + \)
El nucleo del proceso es un algoritmo evolutivo (u + A) donde p es el tamafio de la
poblacion de padres y A el numero de descendientes. El ciclo se formaliza en el Algoritmo 1

|def evolucionar(requisitos, ma¥_gen, @y, lam):
1. Inicializacidn
P = [LLM.generate(requlsitos) for _ in range({mu)]

evaluar_poblacion(P) # Invoca a Lean

for g in range (max_gen):
W 2. Baleccidn de Elites
padres = selecciomar_mejores{P, mu)
descendencia = []

3. Variaclén Aslstida por LLM
while len{descendencia) < lam:
padre = random.choice{padres)
prompt = construir_prompt(requisitos, padra, inspiraciones=
padres [:3])

hijo_json = LLM.generate{prompt, temperatures=0.5)

4, Yerificaclén Formal
valido, metricas = Lean.validate(hijo_json)

1"

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

if valido:
hijo.fitness = calcular_fitness(metricas)
alseé:
hijo.fitness = PENALIZACION_MAX # Soft constraint

descendencia.append(hijo)

5. Reemplazo (Mg + Lambda)
P = saleccionar_mejores(padres + descendencia, mu)
persistir_generacion(P, g

return P[0] # Hejor individuo

Listing 1: Pseudocdédigo del Algoritmo de Orquestacion.

Lean 4 como Validador Computable

La validacion de calidad en esta propuesta se centra en la estructura estatica de la
arquitectura. Bajo este foco, adoptamos Lean 4 como un componente operativo del pipeline:
un ejecutable que formaliza y calcula métricas, y verifica invariantes estructurales minimas
de forma determinista (Moura & Ullrich, 2021). Esta eleccién metodoldgica contrasta con
herramientas orientadas al analisis temporal de estados (como TLA+), alineando la verifica-
cion con el lenguaje matematico de las métricas empleadas.

Calculo de Métricas (LCOM)

El Listado 2 presenta la implementacion en Lean de la métrica de cohesion, tal como
se define en el médulo ServiceMetrics.lean de la tesis. Se observa el uso de tipos de punto
flotante para el calculo de precision.

daf LCOM (s : Bervice) : Float =
let ops := 3.o0ps

1
2
3 == Caso degenerado: menos de 2 operaclones
4 if opsa,length < 2 then 0.0 else

5

4] let listOfLists := ops.map (fun ol => ops.map (fun o2 => (al, 02))})
7| 1lst allPalirs := listOfLists.foldr List.append []
b Filtrar pares anicos

9 let pairs := allPairs.filter (fun (ol, o2) => o¢ol.pmame < oZ.mname)

11 -« Particidn: compartan v no CORDArten parAmetros
12 lat (sharing, not3haring) '= pairs. partition
13 (fun (o1, 2) => ol.params.any (fun p => o2.params.contains p))

15 lat p := Float.ofNat potSBharing.length
I6f let g := Float.ofNav sharing.length

I8} if p == 0.0 Il q == 0.0 then 0.0 elas p / (p + q)

Listing 2: Definicién de estructuras y calculo de LCOM en Lean 4.

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Validacién de Invariantes Estructurales

Ademas del calculo métrico, el sistema impone restricciones duras mediante la funcion
validateInvariants. Como se muestra en el Listado 3, esta funcion descarta arquitecturas-
que contengan auto-llamadas o referencias a servicios inexistentes antes de proceder a la
evaluacion.

ljdef valldateInvariants (gt : Genotype) : Except String Unlt := do

2 == 1. Construir conjunto de nombres wvalidos

3] let saerviceNames := (gt.mlcroservices.map (fum 8 => s3.nama)).
toHashiet

-- 2. Veriflicar cada llamada

4

5

4] for c in gt.calls do

T -= I1: No auto-l1lamadas (Self-call})
8

if ¢,caller == ¢.callee then

9 throw B!"Error [Il): Aute-1llamadagen, '{c.caller}?"
160

1 -= T2: Integridad de referencias

12 if ' (sarviceNames.contains c.caller) then

13 throw s!"Error[I2]):,Callery’*{c.caller}’ noyexistae"
14 if ! (serviceNames.contains c.callee) than

15 throw si"Errory[12]:,Callee, '{c.callee}’ no exista"
16

17 pure ()

Listing 3: Validacién de invariantes estructurales en Lean 4.

Esta validacion actia como un filtro de consistencia en el bucle evolutivo, asegurando
que solo los genotipos estructuralmente validos sean considerados para la seleccion.

Implementacion y Reproducibilidad
La reproducibilidad es un desafio central en la IA generativa (Esposito et al., 2025). Para
garantizarla, ArchiGenMS implementa:

» Determinismo en Validacién: El verificador Lean es una funcién pura; ante el mismo
JSON, siempre retorna las mismas métricas.

» Control de Semillas: Aunque los LLMs son estocasticos, fijamos la temperatura (1 =
0.5) y las semillas del generador de numeros pseudoaleatorios de Python.

» Artefactos Persistentes: Cada ejecucién genera un archivo .jsonl con la traza completa
(prompts, respuestas, métricas), permitiendo auditoria ex-post.

El codigo fuente completo y los scripts de orquestacion estan disponibles en el paquete
de replicacion (Narvaez, 2025).

13

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Diseno y Configuracién Experimental

La evaluacién empirica se disefid siguiendo los lineamientos de la metodologia DSR
para completar el ciclo de validacion del artefacto. El objetivo central es determinar si la
integracion de un oraculo formal en el bucle generativo produce mejoras estadisticamente
significativas en la calidad arquitectonica respecto a una linea base estocastica.

A continuacion, se detallan las preguntas de investigacion, las hipotesis planteadas, el
protocolo de ejecucion y los datasets utilizados.

Preguntas e Hipétesis de Investigacion
Para operacionalizar la validacién, formulamos las siguientes preguntas de evaluacion
(PE) y sus correspondientes hipotesis experimentales (H):

e PE1: ; Produce ArchiGenMS arquitecturas con mayor cohesion interna que los enfo-
ques puramente generativos?

e H1: La métrica de cohesién promedio (LCOMavg) disminuira monétonamente a
través de las generaciones, alcanzando valores inferiores a 0.30 (umbral de buena
cohesién (Al-Debagy & Martinek, 2020)).

¢ PE2: ; Es capaz el sistema de mantener el acoplamiento bajo control sin intervencion
humana?

* H2: El acoplamiento maximo (Couplingmax) convergera hacia valores unitarios
(1.0), minimizando las dependencias ciclicas o excesivas.

e PE3: ;Son los resultados reproducibles a pesar de la estocasticidad de los LLMs?

* H3: La varianza de las métricas entre multiples corridas independientes con semi-
llas controladas sera despreciable, confirmando la estabilidad del método.

Dataset de Referencia

Utilizamos el corpus de historias de usuario de Dalpiaz et al. (Dalpiaz, 2018), considerado
el estandar de facto para la evaluacién de tareas de ingenieria de requisitos automatizada.
Este dataset fue seleccionado por su:

1. Heterogeneidad: Incluye 22 proyectos de dominios diversos (e-commerce, gestion
académica, gobierno, ciencia ciudadana).

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...
Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

15

2. Realismo: Los requisitos presentan ambiguedades tipicas del lenguaje natural que
desafian a los parsers tradicionales.

3. Disponibilidad: Al ser de acceso abierto, garantiza la replicabilidad de nuestro estu-
dio. La Tabla 1 resume las caracteristicas de los proyectos seleccionados para la

prueba.

TABLA 1: Subconjunto representativo de los proyectos del dataset de Dalpiaz ut lizados en la

evaluacioén.

Identificador Dominio # Historias
gog-recycling Gestién de reciclaje 52
g24-unibath Repositorio institucional (Educacion) 48
goz-federalspending Transparencia financiera (Gobierno) 65
gos-openspending Presupuestos abiertos 38
g28-zooniverse Ciencia ciudadana 42

35

g13-planningpoker

Herramientas dgiles

Protocolo y Configuracion

El experimento se ejecutd en un entorno controlado (Intel Core i7, 12GB RAM) utilizando
el orquestador Python 3.11 y el verificador Lean 4 v4.22. Para garantizar la validez estadistica,
se aplico el siguiente protocolo riguroso:

1. Aislamiento: Cada proyecto del dataset se traté como un escenario independiente.

2. Repeticion: Se realizaron 5 corridas completas para cada escenario, variando la
semilla aleatoria (SEED K{42,101,...}) para mitigar el sesgo estocastico del LLM.

3. Parametros Evolutivos: Se configuraron para equilibrar la exploracion y la explotacién:

» Poblacion (u): 10 individuos.

» Descendencia (A): 10 hijos por generacion.

» Generaciones: 5 (se observé convergencia temprana en pruebas piloto).

» Modelo LLM: gpt-40-mini con temperatura 1 = 0.5. Una temperatura media permite
variacion creativa en la mutacion sin degradar la coherencia sintactica del JSON.

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Resultados y Analisis

En esta seccion se presentan los hallazgos empiricos derivados de la ejecucion del
pipeline sobre los 22 escenarios de prueba del dataset de (Dalpiaz, 2018). El analisis se
estructura en dos niveles: primero, una evaluacion cuantitativa global que examina el ren-
dimiento del algoritmo evolutivo y la significancia estadistica de las mejoras; y segundo, un
examen cualitativo detallado que ilustra la coherencia légica de las soluciones arquitecto-
nicas generadas mediante un caso de estudio representativo.

Resultados Cuantitativos

A continuacién, se presentan los hallazgos empiricos derivados de la ejecucion sistema-
tica del pipeline sobre los 22 escenarios del dataset de referencia. El analisis se enfoca en
evaluar la eficacia del mecanismo evolutivo mediante dos dimensiones clave: la capacidad
de optimizacién global de la funcién de aptitud y la distribucion estadistica de las métricas
estructurales resultantes.

Convergencia del Fitness

La Figura 2a muestra la evolucion promedio de la funcion de aptitud 7 (G) a lo largo de
las generaciones. Se observa un descenso monoétono y sostenido, pasando de una media
de 16.34 en la Generacién 1 a 9.10 en la Generacion 5. Esto representa una mejora global
del 44.3% en la calidad arquitectonica segun las métricas formalizadas.

Distribucidn de LEDM_awg por genetaciin

IS A
1 a
Convergencia de la funcidn de aptitud o - ﬁ
e & o e T T8 ~F*
"_": 161 % ol 8 !
% 14 1 éua . 1 T T
303 | .
E« 124 E o
g ox{ | |
£ 104 o1] o
' - ' . r - - - - ane —— - - — ——
10 15 20 25 30 35 40 45 50 : x - T T
Generacion i
a) Convergencia de la Funciéon de Aptitu . istribucion de Cohesién por Gen.
(a) C ia de la Funcién de Aptitud f (G) (b) Distribucién de Cohesién (LCOM) G

Figura 2: Analisis de convergencia a lo largo de 5 generaciones. La reduccion en la
media y la dispersion confirma la eficacia del operador de variacion basado en LLM.

En paralelo, la cohesion promedio (LCOMavg) mejoro significativamente, bajando de
0.289 a 0.230 (Figura 2b). Esto indica que el sistema aprendi6é a agrupar operaciones que
comparten parametros, reduciendo la fragmentacién funcional sin intervenciéon humana
directa.

16

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Resumen de Resultados por Proyecto

La Tabla 2 presenta el detalle completo de los mejores genotipos obtenidos para cada
uno de los 22 escenarios. Estos datos permiten observar la consistencia del enfoque a través
de dominios diversos.

Significancia Estadistica

Para validar si la mejora es producto del azar, apIigSanos la prueba no paramétrica de
Kruskal-Wallis. Los resultados (H = 153.08, p = 4.4x10) confirman diferencias estadisti-
camente significativas entre las distribuciones de las distintas generaciones. El analisis post-
hoc de Dunn con correccion de Holm confirmé que la diferencia entre la Generacion 1y la
Gene-racion 5 es significativa (p < 0.001). .

TABLA 2: Resumen de genotipos éptimos por proyecto. Se detallan las métricas estructurales y
el valor de aptitud (fitness) alcanzado por el mejor individuo validado en la Gltima generacion
para cada uno de los 22 escenarios.

Proyecto #Serv. LCOM Coup SGM SD Fit
202-federalspending.txt 0.000 1.000 3.000 0.471 4471
g17-cask.txt 0.000 1.000 5.000 0.000 6.000
222-rdadmp.txt 0.000 2.000 5.000 0.471 7.471
19-alfred.txt 0.095 1.000 4.000 1366 6.461
g25-duraspace.txt 0.120 1.000 5.000 1.633 7.753
11-nsf.txt 0.133 1.000 3.000 0.000 4.133
gl4-datahub.txt 0.140 1.000 5.000 0.980 7.120
g13-planningpoker.txt 0.140 1.000 5.000 2708 8.848
218-neurohub.txt 0.146 1.000 4.000 2376 7.522
208-frictionless.txt 0.150 2.000 5000 0400 7.550

24-unibath.txt 0.167 1.000 4.000 2853 8.020
g27-culrepo.txt 0.200 1.000 5.000 2555 8.755
g26-racdam. txt 0.213 1.000 5000 0.871 7.084
16-mis.txt 0.219 1.000 8.000 2.644 11.863
203-loudoun. txt 0.238 1.000 5.000 1.804 8.042
g12-camperplus.txt 0.250 1.000 5.000 1470 7.720
g2 1-badcamp. txt 0.286 1.000 4.000 0.971 6.257
g04-recycling.txt 0.294 1.000 5.000 1.690 7.984

23-archivesspace.txt 0.298 1.000 12.000 0.844 14.142
gl0-scrumalliance.txt 0356 1.000 5.000 1766 8.122
205-openspending. txt 0.507 1.000 5.000 2138 8.645
g28-zooniverse.xt 0.538 1.000 8.000 0.681 10.2 19|

Lhh @ O O =1 O =1 G0 O SO Ooo L Oy~ b =]

Analisis de Casos Atipicos y Heterogeneidad
Si bien la convergencia global fue positiva, la Tabla 2 revela comportamientos divergen-
tes que iluminan las limitaciones del enfoque.

Outliers de Cohesién. En dominios con alta heterogeneidad funcional intrinseca, como
g05-openspending y g28-zooniverse, el sistema convergié a valores de LCOM > 0.50. Esto
sugiere que las historias de usuario en estos datasets describen operaciones disjuntas que

17

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

dificilmente pueden agruparse en servicios cohesivos sin violar restricciones de acoplamiento.
En estos casos, ArchiGenMS priorizé mantener un bajo acoplamiento (Coupling = 1) a costa
de una menor cohesién interna.

Outliers de Granularidad. El caso g23-archivesspace (resaltado en la tabla) presenté
un servicio con SGMmax = 12. Aunque el validador formal no rechazé esta configuracion
(ya que no violaba invariantes duros), este valor sugiere la presencia de un God Service
residual. Este hallazgo indica que la funcién de aptitud podria beneficiarse de penalizaciones
no lineales para granularidades extremas (SGM > 10).

Analisis Cualitativo: Caso de Estudio g24-unibath
Para ilustrar la inteligencia”del disefio, analizamos el caso g24-unibath (Repositorio
Institucional).

Evolucion del Diseio. En la Generacioén 1, el LLM propuso un disefio ingenuo con
un God Service llamado ‘SystemManager’ (12 operaciones, LCOM = 0.85) y acoplamiento
ciclico entre ‘Auth’ y ‘User*. El verificador Lean penalizé estas estructuras invalidas. Hacia
la Generacion 3, el mecanismo de inspiraciones guio al modelo a descomponer el monoli-
to, pero surgieron “nano-servicios”de una sola operacion, lo que elevé la penalizacion por
acoplamiento.

Finalmente, en la Generacién 5 (ver Figura 3), el sistema convergié en una topologia
estable de 6 servicios con LCOM = 0.16 y Coupling__ = 1. Cualitativamente, observamos
la emergencia del patron Database-per-Service virtual: el servicio ‘DataDeposit’ encapsuld
exclusivamente las operaciones de escritura (ingesta), mientras que ‘DataRetrieval’ centralizé
las lecturas. Este refinamiento no fue programado explicitamente, sino que emergié de la
presion selectiva ejercida por las métricas formales.

Ingreso_y_Profesaniento Gebierno_y_Integracion

Userdanagement |—’| DatalDeposit l—'l Catamwtrirval : * AdminHanagement l—' Integration I—.l STorageserice

Figura 3: Arquitectura generada para g24-unibath. Nétese la clara separacion de responsabi-lidades entre Inges-
ta, Recuperacion y Gestion.

Discusion

Los resultados obtenidos confirman la viabilidad del enfoque hibrido y permiten validar
las hipétesis planteadas al inicio del estudio. En esta seccidn, interpretamos la evidencia
empirica a la luz de las cuatro hipétesis de investigacion, contrastamos el desempefio de
ArchiGenMS con el estado del arte y analizamos las amenazas a la validez.

18

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Validacion de Hipétesis e Interpretacion

Sobre la Cohesidén (H1). La reduccién sostenida del LCOMavg (de 0.289 a 0.230) con-
firma la hipotesis H1. A diferencia de los enfoques basados puramente en similitud semantica
como SEMGROMI (Vera-Rivera et al., 2023), que son vulnerables a la anisotropia de los
embeddings (Pérez et al., 2025), nuestro enfoque evolutivo agrupé operaciones basandose
en la coherencia de sus firmas de parametros. El oraculo formal actué como un discriminador
efectivo, penalizando servicios que, aunque semanticamente afines, carecian de cohesion
estructural.

Sobre la Granularidad (H2). Los datos respaldan parcialmente la hipétesis H2. La
mayoria de los escenarios convergieron hacia servicios con un tamafo funcional equilibrado
(SGM 11 [2,5]), evitando la proliferacion de microservicios anémicos. Sin embargo, la detec-
cion del caso atipico en g23-archivesspace (SGMmax = 12) indica que, sin una penalizacion
no lineal estricta, el sistema puede tolerar “God Services” locales si estos contribuyen a
minimizar el acoplamiento global. Esto sugiere una oportunidad para refinar la funcién de
aptitud en trabajos futuros.

Sobre el Acoplamiento (H3). La convergencia del acoplamiento maximo hacia valores
unitarios (Couplingmax = 1.15) valida robustamente H3. ArchiGenMS demostré capacidad
para descubrir topologias con dependencias minimas, superando a los disefios manuales
que a menudo introducen acoplamientos accidentales. Las excepciones observadas (como
en g22-rdadmp) corresponden a dominios con interdependencias funcionales irreducibles,
donde un mayor acoplamiento es consecuencia de la légica del negocio y no de un defecto
del algoritmo.

Sobre la Reproducibilidad (H4). Los intervalos de confianza estrechos observados en
las curvas de convergencia (Figura 2) confirman la hipétesis H4. A pesar de la estocasticidad
inherente a los LLMs, la varianza entre corridas independientes fue despreciable en las gene-
raciones finales. Esto demuestra que la estrategia de Prompting con inspiraciones y la selec-
cion elitista logran estabilizar el proceso generativo, garantizando resultados reproducibles.

Posicionamiento en la Ingenieria de Software Basada en Busqueda
(SBSE)

Desde la perspectiva de la SBSE (Harman et al., 2012), ArchiGenMS representa una
innovacion metodoldgica: sustituye los operadores de mutacion sintactica aleatoria (tipicos
de los algoritmos genéticos clasicos) por un operador de variacion semantica basado en
LLMs. Esto permite explorar el espacio de disefio mediante “saltosinteligentes y contextua-
lizados, en lugar de caminatas aleatorias, lo que explica la rapida convergencia en apenas
5 generaciones frente a las cientos requeridas por métodos tradicionales.

Amenazas ala Validez
El rigor cientifico exige reconocer las limitaciones del disefio experimental.

19

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Validez de Constructo. Existe una brecha ontolégica entre la calidad estructural y la
calidad operacional. Las métricas empleadas (LCOM, SGM, Fan-Out) son proxies estaticos
consolidados en la literatura (Al-Debagy & Martinek, 2020), pero no capturan atributos dina-
micos como la latencia, el throughput o la tolerancia a fallos. ArchiGenMS valida la solidez
del “plano.arquitecténico, pero no garantiza el comportamiento del sistema bajo carga real.

Validez Interna. Aunque el control de semillas mitiga la variabilidad, la dependencia de
un modelo de lenguaje especifico (GPT-40-mini) introduce un sesgo tecnoldgico. Cambios
en la version del modelo subyacente podrian alterar la eficacia del operador de mutacion.
No obstante, la arquitectura modular del pipeline permite la sustitucion del motor generativo
sin invalidar el método de verificacion.

Validez Externa. Los experimentos se limitan al dataset de Dalpiaz (Dalpiaz, 2018), que
contiene requisitos en inglés de dominios estandar. La generalizacién de estos hallazgos a
entornos industriales con requisitos en otros idiomas, o con documentacion técnica mixta
y des-estructurada, debe realizarse con cautela y requiere validacion adicional en estudios
de caso empresariales.

Conclusiones y Lineas Futuras

Esta investigacion ha completado un ciclo metodoloégico de Design Science Research
(DSR) orientado a resolver la tensién entre la flexibilidad de la Inteligencia Artificial Generativa
y el rigor exigido por la ingenieria de software. Se parti6 del problema de relevancia industrial:
la dificultad de descubrir limites de microservicios coherentes en escenarios greenfield don-
de la Unica fuente de informacion son requisitos textuales ambiguos. Frente a los enfoques
manuales no verificables y las alucinaciones estructurales de los LLMs, el artefacto resultante,
ArchiGenMS, demuestra que es posible sistematizar el disefio arquitecténico mediante un
ciclo hibrido de generacioén evolutiva y verificacion formal.

Sintesis de Aportaciones

Desde una perspectiva tedrica, este trabajo ha contribuido con una formalizaciéon ope-
rativa de métricas arquitecténicas clasicas (LCOM, SGM, SGM-SD y Fan-Out). A diferencia
de su uso tradicional como indicadores post-mortem, aqui se han redefinido como funciones
totales sobre grafos dirigidos en Lean 4, permitiendo su calculo determinista en presencia de
estructuras incompletas. Esta formalizacion cierra la brecha entre las definiciones concep-
tuales de la literatura y su implementacion computable, habilitando pruebas automaticas de
propiedades estructurales como la integridad referencial y la irreflexividad de las llamadas.

En el plano metodoldgico, la principal innovacion reside en la definicion de un esque-
ma evolutivo asistido por LLMs que supera las limitaciones de los operadores genéticos
tradicionales. Al utilizar el modelo de lenguaje como un motor de variacién semantica —guiado
por una estrategia de prompting con inspiraciones—, el sistema logra explorar el espacio de

20

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G.

disefio de manera inteligente, proponiendo refactorizaciones que respetan la semantica del
dominio (como la separacién de responsabilidades de lectura/escritura) sin perder la cohe-
rencia sintactica. Esta sinergia entre exploracion generativa y restricciones formales reduce
significativamente la deriva semantica habitual de los modelos generativos.

La evidencia empirica, obtenida sobre 22 escenarios del dataset de referencia de Dalpiaz,
valida la robustez del enfoque. La reduccion sostenida del 44% en la funcién de aptitud y
la convergencia hacia arquitecturas con un acoplamiento maximo unitario (Couplingmax =
1.15) confirman estadisticamente que el oraculo formal actua eficazmente como un gradiente
de calidad. Mas alla de los numeros, el analisis cualitativo demuestra que las arquitecturas
resultantes no son solo grafos optimizados matematicamente, sino disefios l6gicamente
coherentes alineados con los flujos del negocio.

Limitaciones del Estudio

La interpretacion de estos resultados debe considerar ciertas limitaciones inherentes al
disefio experimental. En primer lugar, la validez de construccion se circunscribe a la calidad
estructural estatica. Las métricas empleadas (cohesion y acoplamiento) son proxies nece-
sarios pero no suficientes de la calidad del software; aspectos operacionales criticos como
la latencia, el throughput y la tolerancia a fallos quedan fuera del alcance de una validacién
estatica. ArchiGenMS valida el “plano.arquitecténico, no el edificio bajo carga.

En segundo lugar, existe una amenaza a la validez externa relacionada con la cobertura
de datos. Aunque el dataset utilizado es el estandar en la comunidad de ingenieria de requi-
sitos, se limita a descripciones en inglés y dominios académicos o de gobierno abierto. La
extrapolacion de los resultados a contextos industriales con documentacioén técnica mixta (dia-
gramas, especificaciones legadas) o en otros idiomas requiere cautela y validacion adicional.

Agenda de Investigacion Futura
A partir de los hallazgos y limitaciones expuestas, se proyectan tres lineas de investi-
gacion prioritarias para evolucionar el estado del arte en AI4SE:

De la Verificacion Estructural a la Simulacién Dinamica. La evolucién natural de este
trabajo es la transicién de un pipeline “Generar-Verificar.” uno “Generar-Verificar-Simular”. Se
propone que los candidatos que superen el filtro formal de Lean sean instanciados automatica-
mente en simuladores de eventos discretos o entornos de orquestacion (e.g., Kubernetes).
Esto permitiria evaluar atributos de calidad dinamicos (NFRs) y retroalimentar la funcion de
aptitud con datos de ejecucion, cerrando el ciclo entre disefio y operacion.

Automatizaciéon Formal Avanzada. Existe un vasto potencial en profundizar el uso
de Lean 4 mas alla del calculo de métricas. Futuras iteraciones podrian demostrar propie-
dades globales del sistema, como la aciclicidad garantizada del grafo de dependencias o
el cumplimiento de politicas de seguridad de flujo de informacion entre bounded contexts.

21

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

La co-evolucién de la arquitectura junto con sus pruebas formales es una via prometedora
hacia el desarrollo de software ¢orrecto por construccion”.

Transferencia y Validacién Industrial. Finalmente, para consolidar la utilidad practica
del enfoque, es necesario enfrentar la complejidad de los requisitos del mundo real. Esto
implica extender el Prompt Sampler para procesar entradas multimodales y multilingues, y
empaquetar el verificador formal como una herramienta de integracion continua (Cl) que
asista a los arquitectos humanos en la deteccién temprana de deuda técnica estructural.

En conclusion, esta tesis sostiene que la inteligencia artificial no debe reemplazar el rigor
ingenieril, sino potenciarlo. La integracion de modelos generativos con métodos formales
ofrece un camino pragmatico para automatizar el disefio de sistemas complejos, asegurando
que la velocidad de la generacion no comprometa la solidez de la arquitectura.

Referencias

Al-Debagy, O., & Martinek, P. (2020). A metrics framework for evaluating microservices architecture
designs. Journal of Web Engineering, 19(3—4), 341-370.

Bajaj, D., Bharti, U., Gupta, ., Gupta, P., & Yadav, A. (2024). GTMicro—Microservice identification ap-
proach based on deep NLP transformer model for greenfield developments. International Journal
of Information Technology, 16(5), 2751-2761.

Bajaj, D., Goel, A., & Gupta, S. C. (2022). GreenMicro: identifying microservices from use cases in
greenfield development. IEEE Access, 10, 67008-67018.

Battaglia, N., Garcia, A. N., & Congiusti, A. (2024). Descubrimiento de Microservicios en Metodologias
Agiles: un mapeo sistematico de la literatura. XXX Congreso Argentino de Ciencias de la
Computacion (CACIC)(La Plata, 7 al 11 de octubre de 2024).

Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR), 28(4), 626-643.

Clarke, E., Grumberg, O., & Peled, D. A. (1999). Model checking the mit press. Cambridge,
Massachusetts, London, UK, 988.

Dalpiaz, F. (2018, julio). Requirements data sets (user stories). Mendeley Data. https://doi.org/
10.17632/7zbk8zsd8y.1

Esposito, M., Li, X., Moreschini, S., Ahmad, N., Cerny, T., Vaidhyanathan, K., Lenarduzzi, V., & Taibi,
D. (2025). Generative Al for Software Architecture. Applications, Trends, Challenges, and Future
Directions. arXiv preprint arXiv:2503.13310.

Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman; Hall/CRC.

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering: Trends, techni-
ques and applications. ACM Computing Surveys (CSUR), 45(1), 1-61.

22

https://doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.17632/7zbk8zsd8y.1

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

Hevner, A. R., March, S. T,, Park, J., & Ram, S. (2004). Design science in information systems re-
search. MIS quarterly, 75-105.

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., & Banerjee, D. (2021). Mono2micro: a prac-
tical and effective tool for decomposing monolithic java applications to microservices. Proceedings
of the 29th ACM joint meeting on European software engineering conference and symposium on
the foundations of software engineering, 1214-1224.

Mitchell, B. S., & Mancoridis, S. (2008). On the evaluation of the bunch search-based software modu-
larization algorithm. Soft Computing, 12(1), 77-93.

Moura, L. d., & Ullrich, S. (2021). The lean 4 theorem prover and programming language. International
Conference on Automated Deduction, 625-635.

Narvaez, D. (2025). ArchiGenMS: Reproducible Package [Accedido: 22 jul. 2025].

Narvéez, D., Battaglia, N., Fernandez, A., & Rossi, G. (2025a). Designing microservices using ai: A
systematic literature review. Software, 4(1), 6.

Narvaez, D., Battaglia, N., Fernandez, A., & Rossi, G. (2025b). Descubrimiento automatico de mi-
croservicios mediante modelos generativos y verificacion formal. XXXI Congreso Argentino de
Ciencias de la Computacion (CACIC) (Viedma, 6 al 10 de octubre de 2025).

Narvéez, D., Rossi, G. H., & Battaglia, N. (2024). Aplicacion de inteligencia artificial en el disefio de
microservicios. XXX Congreso Argentino de Ciencias de la Computacion (CACIC)(La Plata, 7 al
11 de octubre de 2024).

Neri, D., Soldani, J., Zimmermann, O., & Brogi, A. (2020). Design principles, architectural smells
and refactorings for microservices: a multivocal review. SICS Software-Intensive Cyber-Physical
Systems, 35(1), 3-15.

Newman, S. (2021). Building microservices: designing fine-grained systems. .O‘Reilly Media, Inc.”

Pérez, G., Mostaccio, C., & Antonelli, L. (2025). Analisis comparativo de arquitecturas de NLP para
detectar similitudes entre escenarios en espafiol. Workshop on Requirements Engineering (WER).

Stojanovic, T., & Lazarevi'c, S. D. (2023). The application of ChatGPT for identification of microservi-
ces. E-business technologies conference proceedings, 3(1), 99-105.

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, motivations, and issues for migrating to micro-
services architectures: An empirical investigation. IEEE Cloud Computing, 4(5), 22-32.

Taibi, D., Lenarduzzi, V., Pahl, C., & Janes, A. (2017). Microservices in agile software development: a
workshop-based study into issues, advantages, and disadvantages. Proceedings of the XP2017
Scientific Workshops, 1-5.

Taibi, D., & Systd, K. (2019). A Decomposition and Metric-Based Evaluation Framework for
Microservices. https://arxiv.org/abs/1908.08513

Unli, H., Kennouche, D. E., Soylu, G. K., & Demirérs, O. (2024). Microservice-based projects in agile
world: A structured interview. Information and Software Technology, 165, 107334.

Velepucha, V., & Flores, P. (2023). A survey on microservices architecture: Principles, patterns and
migration challenges. IEEE access, 11, 88339-88358.

23

https://arxiv.org/abs/1908.08513

~
0

ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 2-24
Generative Al and Formal Verification in Microservice Discovery...

Narvéaez, D., Battaglia, N., Fernandez, A., & Rossi, G.

24

Vera-Rivera, F. H., Cuadros, E. G. P., Perez, B., Astudillo, H., & Gaona, C. (2023). SEM-GROMI|—a
semantic grouping algorithm to identifying microservices using semantic similarity of user stories.
Peerd Computer Science, 9, e1380.

Zhong, C., Li, S., Huang, H., Liu, X., Chen, Z., Zhang, Y., & Zhang, H. (2024). Domaindriven design
for microservices: An evidence-based investigation. IEEE Transactions on Software Engineering,
50(6), 1425-1449.

