
2
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Aplicación de Inteligencia Artificial Generativa y Verificación Formal ...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

2

Este trabajo está bajo una Licencia Creative Commons Atribución 4.0 Internacional

Aplicación de Inteligencia Artificial Generativa 
y Verificación Formal en el Descubrimiento de 
Microservicios
Generative AI and Formal Verification in 
Microservice Discovery

Daniel Narváez  
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. Keiser University 
Campus Latinoamericano – Facultad de Ingeniería de Software San Marcos, Departamento de 
Carazo, Nicaragua. 

Nicolás Battaglia  
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina.  

Alejandro Fernández  
LIFIA, Facultad de Informática, Universidad Nacional de La Plata (UNLP), Argentina.  

Gustavo Rossi  
Universidad Abierta Interamericana (UAI), CAETI, Buenos Aires, Argentina. LIFIA, Facultad de 
Informática, Universidad Nacional de La Plata (UNLP), Argentina.  
 
DOI https://doi.org/10.59471/raia2025225
Enviado: junio 2025.  Aceptado: octubre 2025. Publicado: diciembre 2025  
Como citar: Narváez, D., Battaglia, N., Fernández, A., & Rossi, G. (2025). Aplicación de Inteligencia Artificial Ge-
nerativa y Verificación Formal en el Descubrimiento de Microservicios. Revista Abierta De Informática Aplicada, 
9(1). https://doi.org/10.59471/raia2025225

Resumen

El diseño de microservicios a partir de requisitos textuales constituye un desafío persis-
tente en la ingeniería de software, debido a la ambigüedad del lenguaje natural y a la ausencia 
de mecanismos formales que garanticen calidad arquitectónica. En el marco de una inves-
tigación doctoral en la Universidad Abierta Interamericana (UAI), se presenta ArchiGenMS, 
un pipeline evolutivo que combina modelos de lenguaje generativos (LLMs) con verificación 
formal en Lean para el descubrimiento automático de microservicios. La propuesta integra 
prompt engineering evolutivo, métricas estructurales de cohesión, granularidad y acoplamien-
to, y validación automática de restricciones arquitectónicas. Los experimentos realizados 
con datasets públicos de historias de usuario, como el caso g24-unibath, muestran que el 
enfoque permite generar arquitecturas con alta cohesión (LCOMavg = 0.167), granularidad 
controlada (SGMmax = 4) y bajo acoplamiento (Couplingmax = 1). Los resultados evidencian el 
potencial de integrar técnicas generativas y verificación formal para construir arquitecturas 
mantenibles y reproducibles en escenarios greenfield.

https://doi.org/10.59471/raia2025225
https://doi.org/10.59471/raia2025225


3
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

PALABRAS CLAVES: Microservicios, descubrimiento automático, modelos de lenguaje grandes, 
verificación formal, Lean Theorem Prover, métricas arquitectónicas, prompt engineering 
evolutivo, ingeniería de software asistida por IA.

Abstract

The 1918 University Reform, initiated at the National University of Córdoba, marked 
a milestone in higher education in Latin America. It emerged in a context of political and 
social transformations, driven by students seeking to dismantle the elitist, clerical, and  
authoritarian university model. It promoted university autonomy, student participation in  
governance, academic freedom, and the extension of knowledge to society. Although the 
reform originated in Argentina, its ideals influenced other countries, particularly Chile, where 
similar movements emerged. Its legacy endures today, as evidenced by the reinstatement of 
student shared governance at the University of Santiago, Chile, in 2025.

KEYWORDS: University Reform, Student Movements, Autonomy, Academic Freedom, Latin 
American Education.

INTRODUCCIÓN

La ingeniería de software contemporánea enfrenta una tensión fundamental: la nece-
sidad de desarrollar sistemas escalables y mantenibles a gran velocidad (Newman, 2021), 
frente a la exigencia de garantizar rigor arquitectónico y robustez estructural (E. M. Clarke 
& Wing, 1996). Las arquitecturas de microservicios se han consolidado como la respuesta 
predominante a los requerimientos de escalabilidad y despliegue independiente (Velepucha 
& Flores, 2023), impulsadas por entornos cloud donde las organizaciones requieren iterar 
rápidamente (Taibi, Lenarduzzi & Pahl, 2017). 

Sin embargo, esta transición expone una contradicción metodológica central. La agili-
dad, como paradigma dominante, desalienta el diseño arquitectónico inicial exhaustivo (Big 
Design Upfront). No obstante, los microservicios exigen decisiones de diseño estratégicas y 
correctas desde el inicio para ser exitosos. La evidencia empírica confirma que la complejidad 
de estos sistemas demanda un esfuerzo de planificación que a menudo entra en fricción 
con las prácticas ágiles tradicionales (Taibi, Lenarduzzi, Pahl & Janes, 2017), llevando a los 
equipos a aplicar métodos de estimación subjetivos no adaptados a la naturaleza distribuida 
del paradigma (Ünlü et al., 2024). 

El desafío fundamental no reside en la implementación de servicios individuales, sino en 
el proceso de descubrimiento: decidir cómo particionar una aplicación compleja en componen
tes autónomos. Este reto se magnifica en los escenarios greenfield (desarrollo desde cero), 
foco de este trabajo. A diferencia de la migración brownfield, donde existen artefactos estruc-
turales observables como código o trazas (Kalia et al., 2021), el diseño greenfield depende 
exclusivamente de requisitos textuales fragmentados y ambiguos, tales como historias de 
usuario (Vera-Rivera et al., 2023). 



4
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

La literatura industrial identifica los “cortes incorrectos” (Wrong Cuts) como una de las 
principales causas de fracaso. Una partición deficiente puede derivar en un “monolito distri
buido”: un sistema que sufre la rigidez del acoplamiento monolítico sumada a la latencia y 
fragilidad de la red (Taibi, Lenarduzzi & Pahl, 2017). Estos errores tempranos se manifiestan 
como olores arquitectónicos (architectural smells), tales como God Services o granularidad 
subóptima, que anulan los beneficios de escalabilidad esperados (Neri et al., 2020). 

Para asistir esta actividad crítica, la Inteligencia Artificial (IA) y los Modelos de Lenguaje 
de Gran Escala (LLMs) han mostrado un potencial disruptivo. Sin embargo, las soluciones 
actuales presentan limitaciones metodológicas significativas: 

1.	La falacia de la similitud semántica: Enfoques como SEMGROMI (Vera-Rivera et 
al., 2023) o GreenMicro (Bajaj et al., 2022) asumen que la similitud textual implica 
cohesión funcional. Investigaciones recientes demuestran que, debido a la anisotro-
pía de los embeddings, términos funcionalmente opuestos pueden distanciarse en 
el espacio vectorial, llevando a particiones erróneas (Pérez et al., 2025). 

2.	La brecha de la plausibilidad: Los LLMs generan salidas que parecen correctas 
sintácticamente pero a menudo violan principios estructurales (referencias circulares, 
acoplamiento oculto). Carecen de un mecanismo de grounding formal (Esposito et 
al., 2025). 

La literatura reciente, incluyendo nuestro mapeo sistemático preliminar (Narváez et 
al., 2024) y la revisión sistemática ampliada publicada en Software (Narváez et al., 2025a), 
advierte que aunque los LLMs muestran potencial disruptivo, carecen de mecanismos de 
grounding formal. Para abordar este vacío, esta investigación adopta el marco de Design 
Science Research (DSR) (Hevner et al., 2004) y propone ArchiGenMS, un artefacto que 
implementa un ciclo de generar-verificar. Nuestra propuesta integra la capacidad exploratoria 
de los LLMs con la validación rigurosa de los métodos formales. A diferencia de enfoques 
puramente heurísticos, ArchiGenMS utiliza el asistente de pruebas Lean 4 (Moura & Ullrich, 
2021) como un oráculo formal que evalúa cada candidato mediante métricas computables 
de cohesión (LCOM), granularidad (SGM) y acoplamiento (Fan-Out) (Al-Debagy & Martinek, 
2020). De este modo, la verificación formal no actúa como una validación tardía, sino como 
un motor que guía la búsqueda evolutiva hacia diseños estructuralmente consistentes. 

El resto del artículo está organizado de la siguiente manera: La Sección 2 revisa 
críticamente el estado del arte y expone las limitaciones de los enfoques heurísticos actua-
les. La Sección 3 establece el marco teórico, formalizando las métricas arquitectónicas y el 
modelo matemático subyacente. La metodología propuesta, incluyendo la arquitectura de 
ArchiGenMS y los algoritmos evolutivos, se detalla en la Sección 4. El diseño experimental 
y el protocolo de validación se describen en la Sección 5, seguidos por el análisis de los 
resultados empíricos cuantitativos y cualitativos en la Sección 6. Finalmente, la Sección 7 



5
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

interpreta los hallazgos en el contexto de las hipótesis planteadas, y la Sección 8 resume 
las aportaciones y delinea las líneas de investigación futura. 

Estado del Arte y Motivación 

El diseño de microservicios asistido por IA se sitúa en la intersección de la ingeniería 
de software empírica, la optimización metaheurística y los métodos formales. A continuación, 
desglosamos el estado del arte desde la práctica industrial hasta las fronteras de la investi-
gación generativa, identificando los vacíos que motivan nuestra propuesta. 

La Brecha entre Teoría y Práctica Industrial 
Aunque la literatura prescribe principios claros como el desacoplamiento y la autono-

mía, la evidencia empírica revela que la adopción industrial de microservicios sigue siendo 
predominantemente manual y heurística. Estudios recientes confirman que, si bien el Domain-
Driven Design (DDD) es el enfoque metodológico preferido, su aplicación es abstracta y 
depende críticamente de la pericia de arquitectos senior (Zhong et al., 2024). 

En contextos ágiles, esta dependencia crea un cuello de botella: los equipos a menudo 
recurren a notaciones de diseño orientadas a objetos (OOAD) obsoletas o a talleres colabo-
rativos informales como Event Storming (Battaglia et al., 2024). Esta falta de sistematización 
deriva frecuentemente en descomposiciones subóptimas, conocidas como “cortes incorrectos” 
(Wrong Cuts), que son la causa raíz de la deuda técnica arquitectónica (Taibi, Lenarduzzi, 
Pahl & Janes, 2017). 

El Diseño como Problema de Optimización (SBSE) 
Desde una perspectiva teórica, el descubrimiento de microservicios es una instancia del 

problema de modularización de software, el cual es computacionalmente intratable (NP-hard) 
(Mitchell & Mancoridis, 2008). La disciplina de la Ingeniería de Software Basada en Búsqueda 
(SBSE) aborda este desafío reformulándolo como un problema de optimización (Harman et 
al., 2012). 

Los enfoques tradicionales de SBSE utilizan algoritmos genéticos para optimizar métri-
cas de cohesión y acoplamiento sobre grafos de dependencia estática (código fuente). Sin 
embargo, estos métodos son inaplicables en escenarios greenfield donde no existe código. 
ArchiGenMS extiende este paradigma al sustituir los operadores de mutación sintáctica 
tradicionales por un operador de variación semántica basado en LLMs, permitiendo aplicar 
SBSE directamente sobre el espacio de requisitos textuales. 

Limitaciones de los Enfoques Basados en NLP Clásico 
Para abordar el diseño greenfield, han surgido propuestas que aplican Procesamiento 

de Lenguaje Natural (NLP) sobre historias de usuario, como SEMGROMI (Vera-Rivera et 



6
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

al., 2023) o GTMicro (Bajaj et al., 2024). Estos sistemas agrupan requisitos basándose en 
la similitud de vectores de palabras (embeddings). 

Sin embargo, estos enfoques se fundamentan en una heurística problemática: asumen 
que la similitud semántica es un proxy suficiente de la cohesión funcional. Como demuestran 
Pérez et al. (Pérez et al., 2025), esta asunción es defectuosa debido a la anisotropía en los 
espacios de embeddings. En un espacio vectorial anisotrópico, las representaciones de 
términos funcionalmente opuestos (ej. “Crear” vs. “Borrar”) pueden distanciarse significativa-
mente, llevando a algoritmos de clustering a separar operaciones que deberían pertenecer al 
mismo microservicio (alta cohesión lógica), o a agrupar erróneamente términos léxicamente 
cercanos pero funcionalmente independientes. 

IA Generativa y la Brecha de Verificabilidad
La irrupción de los LLMs ha permitido superar la rigidez del clustering. Estudios 

explo¬ratorios con ChatGPT muestran que los LLMs pueden realizar razonamiento abduc-
tivo para proponer arquitecturas complejas (Stojanovic & Lazarevié, 2023). No obstante, 
estos modelos operan bajo un paradigma de plausibilidad probabilística, no de correc-
ción lógica. Revisiones recientes advierten que los LLMs son propensos a “alucinaciones 
arquitectóni¬cas”: invención de dependencias, violación de granularidad o creación de refe-
rencias circulares (Esposito et al., 2025). Existe, por tanto, una brecha de verificabilidad: la 
capacidad de ge¬nerar diseños ha superado la capacidad de validarlos automáticamente. 
ArchiGenMS aborda este vacío integrando un oráculo formal que evalúa la corrección estruc-
tural de las propuestas generativas antes de que sean aceptadas.

Justificación de la Verificación Formal Estática 
Para mitigar los riesgos de la generación estocástica, es necesario un mecanismo de 

validación riguroso. En la literatura de métodos formales, existen dos familias principales: el 
Model Checking (ej. TLA+, Alloy), orientado a verificar propiedades temporales y de concu-
rrencia; y los Asistentes de Prueba (ej. Lean, Coq), orientados a la demostración matemática 
y el cálculo funcional (E. Clarke et al., 1999). 

Dado que nuestro objetivo es validar la calidad estructural estática (cohesión, acopla
miento, granularidad) y no el comportamiento dinámico en tiempo real, adoptamos Lean 4 
como validador computable (Moura & Ullrich, 2021). A diferencia de un model checker que 
explora espacios de estados exponenciales, Lean permite definir las métricas arquitectóni-
cas como funciones totales y verificar invariantes (como la irreflexividad de las llamadas) de 
manera determinista y eficiente (< 4s por individuo), haciéndolo ideal para integrarse en el 
bucle interno de un algoritmo evolutivo. 



7
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Fundamentación Teórica y Formalización Matemática 

La validación de arquitecturas generadas por IA requiere un marco de referencia rigu-
roso que trascienda las descripciones en lenguaje natural. En esta sección, establecemos 
las bases matemáticas del modelo arquitectónico, formalizamos las métricas de calidad 
como funciones computables y definimos las propiedades algebraicas que garantizan la 
consistencia de la evaluación. 

Preliminares y Notación 
Para garantizar la precisión en la definición de las métricas, fijamos la siguiente notación 

basada en la teoría de conjuntos elemental y teoría de grafos (Gross et al., 2018): 

 
Modelo Formal de la Arquitectura 

Modelamos una arquitectura de microservicios candidata como una estructura de grafo 
dirigido y rotulado. Definimos la tupla  como: 

A = (S,E,O,P)                                                       (1)

Donde: 

Formalización de Métricas Estructurales 
Basándonos en los marcos de evaluación de microservicios establecidos por (Taibi & 

Systä, 2019) y (Al-Debagy & Martinek, 2020), formalizamos las métricas como funciones 



8
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

totales computables sobre el grafo arquitectónico A . Esta formalización es necesaria para garan-
tizar que el cálculo sea determinista dentro del asistente de pruebas Lean 4. 

Cohesión (LCOM Normalizado) 
Adaptamos la métrica Lack of Cohesion of Methods para evaluar la cohesión interna. 

Para un servicio s, sean Ps y Pns los conjuntos de pares de operaciones que comparten y 
no comparten parámetros, respectivamente. Definimos:

Granularidad y Dispersión (SGM) 
Evaluamos el tamaño funcional (SGM) y la consistencia interna de las interfaces 

(SGMSD) utilizando la desviación estándar poblacional: 

 

Acoplamiento (Fan-Out) 
El acoplamiento se define estrictamente como el grado de salida (dout ) en el grafo de 

llamadas inducido: 
 
 

Función de Aptitud Agregada 
La búsqueda evolutiva minimiza una función de aptitud escalar F (G ) que agrega 

las mé-tricas individuales. Para garantizar la comparabilidad con los experimentos previos 
(Narváez et al., 2025b), definimos los operadores de agregación como:



9
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

La función objetivo final se compone linealmente sin pesos arbitrarios, facilitando el 
análisis de sensibilidad: 
 
 

Trazabilidad del Cómputo: Un Ejemplo Constructivo 
Para ilustrar la naturaleza determinista del oráculo formal, presentamos un micro-caso 

de trazabilidad completa, desde la representación del genotipo hasta el cálculo de la aptitud. 

1. Entrada (Genotipo  ): Considérese un sistema con tres servicios definido por el 
LLM: 

2. Cómputo en Lean: 

1 Si bien en este artículo se aborda el caso particular de la Universidad de Santiago de Chile (USACH), existen otras universidades chilenas que 
han incursionado en la participación triestamental en la elección de sus autoridades durante los últimos años.



10
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

3. Agregación: 

Este proceso demuestra que el cálculo de la función de aptitud F es una transformación 
determinista y auditable del grafo arquitectónico, libre de la subjetividad de las métricas 
basadas en similitud semántica pura. 

Metodología: El Pipeline ArchiGenMS 

Para abordar los desafíos de plausibilidad y corrección estructural, diseñamos 
ArchiGenMS, un artefacto que implementa un ciclo de Generar-Verificar iterativo. La meto-
dología se fundamenta en la Ingeniería de Software Basada en Búsqueda (SBSE) (Harman et 
al., 2012), tratando el diseño arquitectónico como un problema de optimización combinatoria 
NP-hard (Mitchell & Mancoridis, 2008). 

A diferencia de enfoques previos que utilizan algoritmos genéticos tradicionales sobre 
código existente, ArchiGenMS opera sobre requisitos textuales y utiliza un Modelo de 
Lenguaje (LLM) como operador de variación semántica. 

Arquitectura del Sistema 
El sistema se compone de dos subsistemas desacoplados (Ver Figura 1): 

1.	 El Orquestador (Python): Gestiona el ciclo de vida evolutivo, mantiene el estado 
de la población y construye los prompts dinámicos. 

2.	 El Verificador (Lean 4): Un componente stateless compilado que actúa como 
oráculo determinista. Recibe un genotipo (JSON), valida invariantes y computa 
métricas con precisión de punto flotante. 

FIGURA 1: Arquitectura del Pipeline Evolutivo. Los LLMs generan 
candidatos que son filtrados y evaluados por el verificador formal Lean 4 
antes de la selección. 



11
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Estrategia de Prompt Engineering Evolutiva 
La calidad de la generación depende críticamente del contexto provisto al LLM. 

Implementamos una estrategia de Prompting Dual para mitigar la deriva semántica: 

Fase 1: Inicialización (Zero-Shot) 
Para la generación g = 0, se inyectan los requisitos crudos R y se impone una restricción 

gramatical estricta (JSON Schema) para garantizar que la salida sea serializable. El objetivo 
es maximizar la diversidad inicial del espacio de búsqueda. 

Fase 2: Variación (Few-Shot con Contexto) 
Para g > 0, el sistema construye un Inspiration Prompt. En lugar de realizar un cruce 

de bits aleatorio (que destruiría la semántica), inyectamos: 

•	 Genotipo Padre (Gparent ): La arquitectura seleccionada en la ronda anterior. 

•	 Inspiraciones (Ibest ): Un conjunto de k = 3 soluciones de alta aptitud recuperadas 
de la historia evolutiva. 

El LLM actúa como un operador de mutación inteligente: “lee” la solución padre y los 
ejemplos de excelencia, y genera una nueva variante que intenta optimizar la estructura 
respetando el dominio. 

Algoritmo de Orquestación (µ + λ) 
El núcleo del proceso es un algoritmo evolutivo (µ + λ) donde µ es el tamaño de la 

población de padres y λ el número de descendientes. El ciclo se formaliza en el Algoritmo 1



12
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

. 

Listing 1: Pseudocódigo del Algoritmo de Orquestación.

Lean 4 como Validador Computable 
La validación de calidad en esta propuesta se centra en la estructura estática de la 

arquitectura. Bajo este foco, adoptamos Lean 4 como un componente operativo del pipeline: 
un ejecutable que formaliza y calcula métricas, y verifica invariantes estructurales mínimas 
de forma determinista (Moura & Ullrich, 2021). Esta elección metodológica contrasta con 
herramientas orientadas al análisis temporal de estados (como TLA+), alineando la verifica-
ción con el lenguaje matemático de las métricas empleadas.

Cálculo de Métricas (LCOM) 
El Listado 2 presenta la implementación en Lean de la métrica de cohesión, tal como 

se define en el módulo ServiceMetrics.lean de la tesis. Se observa el uso de tipos de punto 
flotante para el cálculo de precisión. 

Listing 2: Definición de estructuras y cálculo de LCOM en Lean 4.



13
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Validación de Invariantes Estructurales
Además del cálculo métrico, el sistema impone restricciones duras mediante la función 

validateInvariants. Como se muestra en el Listado 3, esta función descarta arquitecturas-
que contengan auto-llamadas o referencias a servicios inexistentes antes de proceder a la 
evaluación.

 

Listing 3: Validación de invariantes estructurales en Lean 4. 

Esta validación actúa como un filtro de consistencia en el bucle evolutivo, asegurando 
que solo los genotipos estructuralmente válidos sean considerados para la selección.

Implementación y Reproducibilidad
La reproducibilidad es un desafío central en la IA generativa (Esposito et al., 2025). Para 

garantizarla, ArchiGenMS implementa:

•	 Determinismo en Validación: El verificador Lean es una función pura; ante el mismo 
JSON, siempre retorna las mismas métricas.

•	 Control de Semillas: Aunque los LLMs son estocásticos, fijamos la temperatura (τ = 
0.5) y las semillas del generador de números pseudoaleatorios de Python.

•	 Artefactos Persistentes: Cada ejecución genera un archivo .jsonl con la traza completa 
(prompts, respuestas, métricas), permitiendo auditoría ex-post.

El código fuente completo y los scripts de orquestación están disponibles en el paquete 
de replicación (Narváez, 2025).



14
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Diseño y Configuración Experimental 

La evaluación empírica se diseñó siguiendo los lineamientos de la metodología DSR 
para completar el ciclo de validación del artefacto. El objetivo central es determinar si la 
integración de un oráculo formal en el bucle generativo produce mejoras estadísticamente 
significativas en la calidad arquitectónica respecto a una línea base estocástica. 

A continuación, se detallan las preguntas de investigación, las hipótesis planteadas, el 
protocolo de ejecución y los datasets utilizados. 

Preguntas e Hipótesis de Investigación 
Para operacionalizar la validación, formulamos las siguientes preguntas de evaluación 

(PE) y sus correspondientes hipótesis experimentales (H): 

•	 PE1: ¿Produce ArchiGenMS arquitecturas con mayor cohesión interna que los enfo-
ques puramente generativos? 

•	 H1: La métrica de cohesión promedio (LCOMavg) disminuirá monótonamente a 
través de las generaciones, alcanzando valores inferiores a 0.30 (umbral de buena 
cohesión (Al-Debagy & Martinek, 2020)). 

•	 PE2: ¿Es capaz el sistema de mantener el acoplamiento bajo control sin intervención 
humana? 

•	 H2: El acoplamiento máximo (Couplingmax) convergerá hacia valores unitarios 
(1.0), minimizando las dependencias cíclicas o excesivas. 

•	 PE3: ¿Son los resultados reproducibles a pesar de la estocasticidad de los LLMs? 

•	 H3: La varianza de las métricas entre múltiples corridas independientes con semi
llas controladas será despreciable, confirmando la estabilidad del método. 

Dataset de Referencia 
Utilizamos el corpus de historias de usuario de Dalpiaz et al. (Dalpiaz, 2018), considerado 

el estándar de facto para la evaluación de tareas de ingeniería de requisitos automatizada. 
Este dataset fue seleccionado por su: 

1.	Heterogeneidad: Incluye 22 proyectos de dominios diversos (e-commerce, gestión 
académica, gobierno, ciencia ciudadana). 



15
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

2.	Realismo: Los requisitos presentan ambigüedades típicas del lenguaje natural que 
desafían a los parsers tradicionales. 

3.	Disponibilidad: Al ser de acceso abierto, garantiza la replicabilidad de nuestro estu-
dio. La Tabla 1 resume las características de los proyectos seleccionados para la 
prueba.

TABLA 1: Subconjunto representativo de los proyectos del dataset de Dalpiaz ut lizados en la 
evaluación. 

Identificador Dominio # Historias

g04-recycling Gestión de reciclaje 52

g24-unibath Repositorio institucional (Educación) 48

g02-federalspending Transparencia financiera (Gobierno) 65

g05-openspending Presupuestos abiertos 38

g28-zooniverse Ciencia ciudadana 42

g13-planningpoker Herramientas ágiles 35

... ... ...

Protocolo y Configuración 
El experimento se ejecutó en un entorno controlado (Intel Core i7, 12GB RAM) utilizando 

el orquestador Python 3.11 y el verificador Lean 4 v4.22. Para garantizar la validez estadística, 
se aplicó el siguiente protocolo riguroso: 

1.	Aislamiento: Cada proyecto del dataset se trató como un escenario independiente. 

2.	Repetición: Se realizaron 5 corridas completas para cada escenario, variando la 
semilla aleatoria (SEED ∈{42,101,...}) para mitigar el sesgo estocástico del LLM. 

3.	Parámetros Evolutivos: Se configuraron para equilibrar la exploración y la explotación: 

•	 Población (µ): 10 individuos. 

•	 Descendencia (λ): 10 hijos por generación. 

•	 Generaciones: 5 (se observó convergencia temprana en pruebas piloto). 

•	 Modelo LLM: gpt-4o-mini con temperatura τ = 0.5. Una temperatura media permite 
variación creativa en la mutación sin degradar la coherencia sintáctica del JSON.



16
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Resultados y Análisis 

En esta sección se presentan los hallazgos empíricos derivados de la ejecución del 
pipeline sobre los 22 escenarios de prueba del dataset de (Dalpiaz, 2018). El análisis se 
estructura en dos niveles: primero, una evaluación cuantitativa global que examina el ren-
dimiento del algoritmo evolutivo y la significancia estadística de las mejoras; y segundo, un 
examen cualitativo detallado que ilustra la coherencia lógica de las soluciones arquitectó-
nicas generadas mediante un caso de estudio representativo. 

Resultados Cuantitativos
A continuación, se presentan los hallazgos empíricos derivados de la ejecución sistemá-

tica del pipeline sobre los 22 escenarios del dataset de referencia. El análisis se enfoca en 
evaluar la eficacia del mecanismo evolutivo mediante dos dimensiones clave: la capacidad 
de optimización global de la función de aptitud y la distribución estadística de las métricas 
estructurales resultantes.

Convergencia del Fitness
La Figura 2a muestra la evolución promedio de la función de aptitud f (G) a lo largo de 

las generaciones. Se observa un descenso monótono y sostenido, pasando de una media 
de 16.34 en la Generación 1 a 9.10 en la Generación 5. Esto representa una mejora global 
del 44.3% en la calidad arquitectónica según las métricas formalizadas.

(a) Convergencia de la Función de Aptitud f (G).                    (b) Distribución de Cohesión (LCOM) por Gen.  

Figura 2: Análisis de convergencia a lo largo de 5 generaciones. La reducción en la 
media y la dispersión confirma la eficacia del operador de variación basado en LLM. 

En paralelo, la cohesión promedio (LCOMavg) mejoró significativamente, bajando de 
0.289 a 0.230 (Figura 2b). Esto indica que el sistema aprendió a agrupar operaciones que 
comparten parámetros, reduciendo la fragmentación funcional sin intervención humana 
directa. 



17
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Resumen de Resultados por Proyecto 
La Tabla 2 presenta el detalle completo de los mejores genotipos obtenidos para cada 

uno de los 22 escenarios. Estos datos permiten observar la consistencia del enfoque a través 
de dominios diversos. 

Significancia Estadística 
Para validar si la mejora es producto del azar, aplicamos la prueba no paramétrica de 

Kruskal-Wallis. Los resultados (H = 153.08, p ≈ 4.4×10
−32

) confirman diferencias estadísti
camente significativas entre las distribuciones de las distintas generaciones. El análisis post-
hoc de Dunn con corrección de Holm confirmó que la diferencia entre la Generación 1 y la 
Gene-ración 5 es significativa (p < 0.001). .

TABLA 2: Resumen de genotipos óptimos por proyecto. Se detallan las métricas estructurales y 
el valor de aptitud ( fitness) alcanzado por el mejor individuo validado en la última generación 
para cada uno de los 22 escenarios.

Análisis de Casos Atípicos y Heterogeneidad 
Si bien la convergencia global fue positiva, la Tabla 2 revela comportamientos divergen-

tes que iluminan las limitaciones del enfoque. 

Outliers de Cohesión. En dominios con alta heterogeneidad funcional intrínseca, como 
g05-openspending y g28-zooniverse, el sistema convergió a valores de LCOM > 0.50. Esto 
sugiere que las historias de usuario en estos datasets describen operaciones disjuntas que 



18
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

difícilmente pueden agruparse en servicios cohesivos sin violar restricciones de acoplamiento. 
En estos casos, ArchiGenMS priorizó mantener un bajo acoplamiento (Coupling = 1) a costa 
de una menor cohesión interna. 

Outliers de Granularidad. El caso g23-archivesspace (resaltado en la tabla) presentó 
un servicio con SGMmax = 12. Aunque el validador formal no rechazó esta configuración 
(ya que no violaba invariantes duros), este valor sugiere la presencia de un God Service 
residual. Este hallazgo indica que la función de aptitud podría beneficiarse de penalizaciones 
no lineales para granularidades extremas (SGM > 10). 

Análisis Cualitativo: Caso de Estudio g24-unibath 
Para ilustrar la ïnteligencia”del diseño, analizamos el caso g24-unibath (Repositorio 

Institucional). 

Evolución del Diseño. En la Generación 1, el LLM propuso un diseño ingenuo con 
un God Service llamado ‘SystemManager‘ (12 operaciones, LCOM = 0.85) y acoplamiento 
cíclico entre ‘Auth‘ y ‘User‘. El verificador Lean penalizó estas estructuras inválidas. Hacia 
la Generación 3, el mecanismo de inspiraciones guio al modelo a descomponer el monoli-
to, pero surgieron “nano-servicios”de una sola operación, lo que elevó la penalización por 
acoplamiento. 

Finalmente, en la Generación 5 (ver Figura 3), el sistema convergió en una topología 
estable de 6 servicios con LCOM = 0.16 y Couplingmax = 1. Cualitativamente, observamos 
la emergencia del patrón Database-per-Service virtual: el servicio ‘DataDeposit‘ encapsuló 
exclusivamente las operaciones de escritura (ingesta), mientras que ‘DataRetrieval‘ centralizó 
las lecturas. Este refinamiento no fue programado explícitamente, sino que emergió de la 
presión selectiva ejercida por las métricas formales. 

Figura 3: Arquitectura generada para g24-unibath. Nótese la clara separación de responsabi-lidades entre Inges-
ta, Recuperación y Gestión.

Discusión 

Los resultados obtenidos confirman la viabilidad del enfoque híbrido y permiten validar 
las hipótesis planteadas al inicio del estudio. En esta sección, interpretamos la evidencia 
empírica a la luz de las cuatro hipótesis de investigación, contrastamos el desempeño de 
ArchiGenMS con el estado del arte y analizamos las amenazas a la validez. 



19
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Validación de Hipótesis e Interpretación 
Sobre la Cohesión (H1). La reducción sostenida del LCOMavg (de 0.289 a 0.230) con-

firma la hipótesis H1. A diferencia de los enfoques basados puramente en similitud semántica 
como SEMGROMI (Vera-Rivera et al., 2023), que son vulnerables a la anisotropía de los 
embeddings (Pérez et al., 2025), nuestro enfoque evolutivo agrupó operaciones basándose 
en la coherencia de sus firmas de parámetros. El oráculo formal actuó como un discriminador 
efectivo, penalizando servicios que, aunque semánticamente afines, carecían de cohesión 
estructural. 

Sobre la Granularidad (H2). Los datos respaldan parcialmente la hipótesis H2. La 
mayoría de los escenarios convergieron hacia servicios con un tamaño funcional equilibrado 
(SGM ∈ [2,5]), evitando la proliferación de microservicios anémicos. Sin embargo, la detec
ción del caso atípico en g23-archivesspace (SGMmax = 12) indica que, sin una penalización 
no lineal estricta, el sistema puede tolerar “God Services” locales si estos contribuyen a 
minimizar el acoplamiento global. Esto sugiere una oportunidad para refinar la función de 
aptitud en trabajos futuros. 

Sobre el Acoplamiento (H3). La convergencia del acoplamiento máximo hacia valores 
unitarios (Couplingmax ≈ 1.15) valida robustamente H3. ArchiGenMS demostró capacidad 
para descubrir topologías con dependencias mínimas, superando a los diseños manuales 
que a menudo introducen acoplamientos accidentales. Las excepciones observadas (como 
en g22-rdadmp) corresponden a dominios con interdependencias funcionales irreducibles, 
donde un mayor acoplamiento es consecuencia de la lógica del negocio y no de un defecto 
del algoritmo. 

Sobre la Reproducibilidad (H4). Los intervalos de confianza estrechos observados en 
las curvas de convergencia (Figura 2) confirman la hipótesis H4. A pesar de la estocasticidad 
inherente a los LLMs, la varianza entre corridas independientes fue despreciable en las gene-
raciones finales. Esto demuestra que la estrategia de Prompting con inspiraciones y la selec-
ción elitista logran estabilizar el proceso generativo, garantizando resultados reproducibles. 

Posicionamiento en la Ingeniería de Software Basada en Búsqueda 
(SBSE) 

Desde la perspectiva de la SBSE (Harman et al., 2012), ArchiGenMS representa una 
innovación metodológica: sustituye los operadores de mutación sintáctica aleatoria (típicos 
de los algoritmos genéticos clásicos) por un operador de variación semántica basado en 
LLMs. Esto permite explorar el espacio de diseño mediante “saltosïnteligentes y contextua-
lizados, en lugar de caminatas aleatorias, lo que explica la rápida convergencia en apenas 
5 generaciones frente a las cientos requeridas por métodos tradicionales. 

Amenazas a la Validez 
El rigor científico exige reconocer las limitaciones del diseño experimental. 



20
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Validez de Constructo. Existe una brecha ontológica entre la calidad estructural y la 
calidad operacional. Las métricas empleadas (LCOM, SGM, Fan-Out) son proxies estáticos 
consolidados en la literatura (Al-Debagy & Martinek, 2020), pero no capturan atributos diná-
micos como la latencia, el throughput o la tolerancia a fallos. ArchiGenMS valida la solidez 
del “plano.arquitectónico, pero no garantiza el comportamiento del sistema bajo carga real. 

Validez Interna. Aunque el control de semillas mitiga la variabilidad, la dependencia de 
un modelo de lenguaje específico (GPT-4o-mini) introduce un sesgo tecnológico. Cambios 
en la versión del modelo subyacente podrían alterar la eficacia del operador de mutación. 
No obstante, la arquitectura modular del pipeline permite la sustitución del motor generativo 
sin invalidar el método de verificación. 

Validez Externa. Los experimentos se limitan al dataset de Dalpiaz (Dalpiaz, 2018), que 
contiene requisitos en inglés de dominios estándar. La generalización de estos hallazgos a 
entornos industriales con requisitos en otros idiomas, o con documentación técnica mixta 
y des-estructurada, debe realizarse con cautela y requiere validación adicional en estudios 
de caso empresariales. 

Conclusiones y Líneas Futuras 

Esta investigación ha completado un ciclo metodológico de Design Science Research 
(DSR) orientado a resolver la tensión entre la flexibilidad de la Inteligencia Artificial Generativa 
y el rigor exigido por la ingeniería de software. Se partió del problema de relevancia industrial: 
la dificultad de descubrir límites de microservicios coherentes en escenarios greenfield don
de la única fuente de información son requisitos textuales ambiguos. Frente a los enfoques 
manuales no verificables y las alucinaciones estructurales de los LLMs, el artefacto resultante, 
ArchiGenMS, demuestra que es posible sistematizar el diseño arquitectónico mediante un 
ciclo híbrido de generación evolutiva y verificación formal. 

Síntesis de Aportaciones 
Desde una perspectiva teórica, este trabajo ha contribuido con una formalización ope-

rativa de métricas arquitectónicas clásicas (LCOM, SGM, SGM-SD y Fan-Out). A diferencia 
de su uso tradicional como indicadores post-mortem, aquí se han redefinido como funciones 
totales sobre grafos dirigidos en Lean 4, permitiendo su cálculo determinista en presencia de 
estructuras incompletas. Esta formalización cierra la brecha entre las definiciones concep-
tuales de la literatura y su implementación computable, habilitando pruebas automáticas de 
propiedades estructurales como la integridad referencial y la irreflexividad de las llamadas. 

En el plano metodológico, la principal innovación reside en la definición de un esque-
ma evolutivo asistido por LLMs que supera las limitaciones de los operadores genéticos 
tradicionales. Al utilizar el modelo de lenguaje como un motor de variación semántica —guiado 
por una estrategia de prompting con inspiraciones—, el sistema logra explorar el espacio de 



21
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

diseño de manera inteligente, proponiendo refactorizaciones que respetan la semántica del 
dominio (como la separación de responsabilidades de lectura/escritura) sin perder la cohe-
rencia sintáctica. Esta sinergia entre exploración generativa y restricciones formales reduce 
significativamente la deriva semántica habitual de los modelos generativos. 

La evidencia empírica, obtenida sobre 22 escenarios del dataset de referencia de Dalpiaz, 
valida la robustez del enfoque. La reducción sostenida del 44% en la función de aptitud y 
la convergencia hacia arquitecturas con un acoplamiento máximo unitario (Couplingmax ≈ 
1.15) confirman estadísticamente que el oráculo formal actúa eficazmente como un gradiente 
de calidad. Más allá de los números, el análisis cualitativo demuestra que las arquitecturas 
resultantes no son solo grafos optimizados matemáticamente, sino diseños lógicamente 
coherentes alineados con los flujos del negocio. 

Limitaciones del Estudio 
La interpretación de estos resultados debe considerar ciertas limitaciones inherentes al 

diseño experimental. En primer lugar, la validez de construcción se circunscribe a la calidad 
estructural estática. Las métricas empleadas (cohesión y acoplamiento) son proxies nece-
sarios pero no suficientes de la calidad del software; aspectos operacionales críticos como 
la latencia, el throughput y la tolerancia a fallos quedan fuera del alcance de una validación 
estática. ArchiGenMS valida el “plano.arquitectónico, no el edificio bajo carga. 

En segundo lugar, existe una amenaza a la validez externa relacionada con la cobertura 
de datos. Aunque el dataset utilizado es el estándar en la comunidad de ingeniería de requi-
sitos, se limita a descripciones en inglés y dominios académicos o de gobierno abierto. La 
extrapolación de los resultados a contextos industriales con documentación técnica mixta (dia-
gramas, especificaciones legadas) o en otros idiomas requiere cautela y validación adicional. 

Agenda de Investigación Futura 
A partir de los hallazgos y limitaciones expuestas, se proyectan tres líneas de investi-

gación prioritarias para evolucionar el estado del arte en AI4SE: 

De la Verificación Estructural a la Simulación Dinámica. La evolución natural de este 
trabajo es la transición de un pipeline “Generar-Verificar.a uno “Generar-Verificar-Simular”. Se 
propone que los candidatos que superen el filtro formal de Lean sean instanciados automática
mente en simuladores de eventos discretos o entornos de orquestación (e.g., Kubernetes). 
Esto permitiría evaluar atributos de calidad dinámicos (NFRs) y retroalimentar la función de 
aptitud con datos de ejecución, cerrando el ciclo entre diseño y operación. 

Automatización Formal Avanzada. Existe un vasto potencial en profundizar el uso 
de Lean 4 más allá del cálculo de métricas. Futuras iteraciones podrían demostrar propie-
dades globales del sistema, como la aciclicidad garantizada del grafo de dependencias o 
el cumplimiento de políticas de seguridad de flujo de información entre bounded contexts. 



22
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

La co-evolución de la arquitectura junto con sus pruebas formales es una vía prometedora 
hacia el desarrollo de software çorrecto por construcción”. 

Transferencia y Validación Industrial. Finalmente, para consolidar la utilidad práctica 
del enfoque, es necesario enfrentar la complejidad de los requisitos del mundo real. Esto 
implica extender el Prompt Sampler para procesar entradas multimodales y multilingües, y 
empaquetar el verificador formal como una herramienta de integración continua (CI) que 
asista a los arquitectos humanos en la detección temprana de deuda técnica estructural.

En conclusión, esta tesis sostiene que la inteligencia artificial no debe reemplazar el rigor 
ingenieril, sino potenciarlo. La integración de modelos generativos con métodos formales 
ofrece un camino pragmático para automatizar el diseño de sistemas complejos, asegurando 
que la velocidad de la generación no comprometa la solidez de la arquitectura.

Referencias 
Al-Debagy, O., & Martinek, P. (2020). A metrics framework for evaluating microservices architecture 

designs. Journal of Web Engineering, 19(3–4), 341-370. 

Bajaj, D., Bharti, U., Gupta, I., Gupta, P., & Yadav, A. (2024). GTMicro—Microservice identification ap-
proach based on deep NLP transformer model for greenfield developments. International Journal 
of Information Technology, 16(5), 2751-2761. 

Bajaj, D., Goel, A., & Gupta, S. C. (2022). GreenMicro: identifying microservices from use cases in 
greenfield development. IEEE Access, 10, 67008-67018. 

Battaglia, N., García, A. N., & Congiusti, A. (2024). Descubrimiento de Microservicios en Metodologías 
Ágiles: un mapeo sistemático de la literatura. XXX Congreso Argentino de Ciencias de la 
Computación (CACIC)(La Plata, 7 al 11 de octubre de 2024). 

Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions. ACM 
Computing Surveys (CSUR), 28(4), 626-643. 

Clarke, E., Grumberg, O., & Peled, D. A. (1999). Model checking the mit press. Cambridge, 
Massachusetts, London, UK, 988. 

Dalpiaz, F. (2018, julio). Requirements data sets (user stories). Mendeley Data. https://doi.org/ 
10.17632/7zbk8zsd8y.1 

Esposito, M., Li, X., Moreschini, S., Ahmad, N., Cerny, T., Vaidhyanathan, K., Lenarduzzi, V., & Taibi, 
D. (2025). Generative AI for Software Architecture. Applications, Trends, Challenges, and Future 
Directions. arXiv preprint arXiv:2503.13310. 

Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman; Hall/CRC. 

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering: Trends, techni-
ques and applications. ACM Computing Surveys (CSUR), 45(1), 1-61. 

https://doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.17632/7zbk8zsd8y.1


23
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems re-
search. MIS quarterly, 75-105. 

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., & Banerjee, D. (2021). Mono2micro: a prac-
tical and effective tool for decomposing monolithic java applications to microservices. Proceedings 
of the 29th ACM joint meeting on European software engineering conference and symposium on 
the foundations of software engineering, 1214-1224. 

Mitchell, B. S., & Mancoridis, S. (2008). On the evaluation of the bunch search-based software modu-
larization algorithm. Soft Computing, 12(1), 77-93. 

Moura, L. d., & Ullrich, S. (2021). The lean 4 theorem prover and programming language. International 
Conference on Automated Deduction, 625-635. 

Narváez, D. (2025). ArchiGenMS: Reproducible Package [Accedido: 22 jul. 2025]. 

Narváez, D., Battaglia, N., Fernández, A., & Rossi, G. (2025a). Designing microservices using ai: A 
systematic literature review. Software, 4(1), 6. 

Narváez, D., Battaglia, N., Fernández, A., & Rossi, G. (2025b). Descubrimiento automático de mi-
croservicios mediante modelos generativos y verificación formal. XXXI Congreso Argentino de 
Ciencias de la Computación (CACIC) (Viedma, 6 al 10 de octubre de 2025). 

Narváez, D., Rossi, G. H., & Battaglia, N. (2024). Aplicación de inteligencia artificial en el diseño de 
microservicios. XXX Congreso Argentino de Ciencias de la Computación (CACIC)(La Plata, 7 al 
11 de octubre de 2024). 

Neri, D., Soldani, J., Zimmermann, O., & Brogi, A. (2020). Design principles, architectural smells 
and refactorings for microservices: a multivocal review. SICS Software-Intensive Cyber-Physical 
Systems, 35(1), 3-15. 

Newman, S. (2021). Building microservices: designing fine-grained systems. .
O
’Reilly Media, Inc.” 

Pérez, G., Mostaccio, C., & Antonelli, L. (2025). Análisis comparativo de arquitecturas de NLP para 
detectar similitudes entre escenarios en español. Workshop on Requirements Engineering (WER). 

Stojanovic, T., & Lazarevi´c, S. D. (2023). The application of ChatGPT for identification of microservi-
ces. E-business technologies conference proceedings, 3(1), 99-105. 

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, motivations, and issues for migrating to micro-
services architectures: An empirical investigation. IEEE Cloud Computing, 4(5), 22-32. 

Taibi, D., Lenarduzzi, V., Pahl, C., & Janes, A. (2017). Microservices in agile software development: a 
workshop-based study into issues, advantages, and disadvantages. Proceedings of the XP2017 
Scientific Workshops, 1-5. 

Taibi, D., & Systä, K. (2019). A Decomposition and Metric-Based Evaluation Framework for 
Microservices. https://arxiv.org/abs/1908.08513 

Ünlü, H., Kennouche, D. E., Soylu, G. K., & Demirörs, O. (2024). Microservice-based projects in agile 
world: A structured interview. Information and Software Technology, 165, 107334. 

Velepucha, V., & Flores, P. (2023). A survey on microservices architecture: Principles, patterns and 
migration challenges. IEEE access, 11, 88339-88358. 

https://arxiv.org/abs/1908.08513


24
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 2-24
Generative AI and Formal Verification in Microservice Discovery...
Narváez, D., Battaglia, N., Fernández, A., & Rossi, G.

Vera-Rivera, F. H., Cuadros, E. G. P., Perez, B., Astudillo, H., & Gaona, C. (2023). SEM-GROMI—a 
semantic grouping algorithm to identifying microservices using semantic similarity of user stories. 
PeerJ Computer Science, 9, e1380. 

Zhong, C., Li, S., Huang, H., Liu, X., Chen, Z., Zhang, Y., & Zhang, H. (2024). Domaindriven design 
for microservices: An evidence-based investigation. IEEE Transactions on Software Engineering, 
50(6), 1425-1449. 

 


