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Resumen

Este trabajo analiza la explicabilidad del algoritmo de busqueda basado en caminatas
cuanticas acufiadas sobre el hipercubo, integrando la metodologia SMEF-E (Shapley—Matrix
Explainability Framework — Energy). El enfoque combina teoria de juegos cooperativos con
funciones de valor Hamiltonianas, con el fin de atribuir la contribucién funcional y energética
del oraculo, la moneda de Grover y el operador flip-flop durante la evolucién del algoritmo.
La descomposicion mediante valores de Shapley permite interpretar de manera cuantitativa
como se genera la interferencia constructiva y como se redistribuye la energia a medida
que se alcanza la probabilidad de éxito 6ptima. Los resultados experimentales validan los
modelos tedricos y aportan transparencia sobre los mecanismos internos que sustentan la
ventaja cuantica en busqueda espacial.

PALABRAS CLAVES: caminatas cuanticas; hipercubo; valores de Shapley; explicabili-
dad cuantica; Hamiltonianos; ventaja cuantica.

Abstract

This work explores the explainability of the coined quantum walk search algorithm on the
hypercube by incorporating the SMEF-E (Shapley—Matrix Explainability Framework — Energy)
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methodology. In this approach, cooperative game theory is combined with Hamiltonian-based
value functions to attribute, step by step, the energetic and functional impact of the oracle,
the Grover coin, and the flip-flop shift. The resulting Shapley value decomposition offers an
interpretable quantification of operator influence throughout the amplification process, revealing
how constructive interference emerges and is redistributed as the algorithm approaches its
optimal success probability. The experimental analysis confirms theoretical predictions while
providing transparent insights into the mechanisms driving quantum advantage in spatial
search.

KEYWORDS: quantum explainability; Shapley values; coined quantum walk; hypercube search;
Hamiltonian-based interpretation; cooperative contribution.

INTRODUCCION

Los avances recientes en Computacion Cuantica (QC) han demostrado una evolucion
sostenida en el desarrollo de algoritmos capaces de aprovechar los principios de superposicion
y entrelazamiento para resolver problemas de busqueda, optimizacién y simulacién con ven-
taja cuantica respecto a los métodos clasicos (Nielsen & Chuang, 2011; Portugal, 2018). Sin
embargo, esta capacidad conlleva un desafio creciente: la opacidad de los procesos y la
dificultad para interpretar los resultados obtenidos. La ejecucion de un circuito cuantico implica
la aplicacion de operadores unitarios de alta dimensionalidad sobre estados en superposicion,
lo que dificulta determinar el rol individual de cada componente en el resultado final.

En este contexto surge la Computacion Cuantica Explicable (xQC), una extensién con-
ceptual de la Inteligencia Artificial Explicable (XAl) orientada al ambito cuantico (Childs &
Goldstone, 2004). El propdsito de la xQC es aportar transparencia, trazabilidad y auditabilidad
a los algoritmos cuanticos, permitiendo comprender cémo cada bloque u operador contribuye
ala evolucion y al resultado global del circuito.

De manera analoga a las técnicas clasicas de explicabilidad —como LIME o SHAP (Grover,
1996; Shenvi et al., 2003)— la xQC busca atribuir relevancia funcional y energética a los
componentes de un sistema cuantico, de forma cuantitativa y coherente con la fisica sub-
yacente. Distintas lineas de investigacion recientes abordan esta problematica desde per-
spectivas complementarias. Entre ellas se destacan las explicaciones basadas en valores
de Shapley aplicadas a redes cuanticas variacionales (SVQX), los enfoques de visualizacion
como QuantumEyes, y las redes légico-explicadas (Logic-Explained Quantum Networks), que
incorporan principios de logica formal en la inferencia cuantica (Shapley, 1953; Young, 1985).

No obstante, la mayoria de estos enfoques se centran en modelos hibridos cuanti-
co-clasicos y no consideran la dimension energética y cooperativa entre los operadores del
circuito. Para abordar este vacio se propone un marco de andlisis denominado Shapley—Matrix
Explainability Framework — Energy (SMEF-E). El enfoque combina la teoria de juegos cooper-
ativos con la formulacién matricial de los circuitos cuanticos, utilizando valores de Shapley para

170



ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 169-192
Explainability in Quantum Search Algorithms on Hypercube with ...

Pezzini, M. C., Pons, C., & Bibbo, L. M.

descomponer la contribucion energética y funcional de los bloques constitutivos —oraculo,
moneda y operador shift—.

Organizacion del articulo. La Sec. 1 presenta los paradigmas del analisis interpreta-
tivo; la Sec. 2 detalla los fundamentos tedricos; las Secs. 2.5y 2.6 describen los operadores
basicos; la Sec. 2.7 formaliza la evolucién; la Sec. 3 introduce el juego y las funciones de valor
Hamiltonianas; la Sec. 4 detalla SMEF-E y el juego por paso; y la Sec. 5 reporta validaciones
y descomposiciones. Los simbolos y formulas se recopilan en el Apéndice.

1. Tendencias actuales en explicabilidad cuantica (xQC)

El estudio de la explicabilidad en computacion cuantica (xQC) avanza sobre bases teo-
ricas solidas de la informacién y del algoritmo cuantico (Nielsen & Chuang, 2011; Portugal,
2018), y sobre paradigmas de busqueda que sirven como banco de pruebas para el anali-
sis interpretativo (por ejemplo, Grover y su formulaciéon por caminatas cuanticas) (Childs &
Goldstone, 2004; Grover, 1996; Shenvi et al., 2003). En este contexto, se observan tendencias
convergentes orientadas a integrar la transparencia al propio ciclo de disefio y evaluacion
de algoritmos.

Primero, se consolida una linea de atribucion funcional que traslada principios de la
teoria de juegos cooperativos al andlisis de circuitos: los valores de Shapley permiten descom-
poner, con criterios de equidad y eficiencia, la contribucidén de bloques u operadores a un
objetivo (p. ej., probabilidad de éxito o variacion energética) (Shapley, 1953; Young, 1985).
Esta perspectiva aporta métricas cuantitativas y contrastables para auditar el rol de oraculos,
monedas y operadores de desplazamiento en algoritmos de busqueda y optimizacion.

Segundo, emergen esquemas de explicabilidad estructural que se apoyan en la for-
mulacién matricial y en subespacios simétricos para describir la dinamica global de circuitos
sobre grafos altamente regulares (como el hipercubo), facilitando la lectura de fenémenos de
interferencia y concentracion de amplitud (Childs & Goldstone, 2004; Portugal, 2018). En estos
modelos, la trazabilidad se beneficia de descomposiciones que relacionan operadores unitarios
con variaciones observables a lo largo de las iteraciones.

Tercero, se fortalece la evaluacion comparativa de explicaciones: sobre la base de
meétricas bien definidas (eficiencia y simetria en atribuciones; complejidad asintotica en bus-
queda), se promueve medir la coherencia entre lo que el algoritmo declara “explicar’ y lo que
efectivamente optimiza (p. €j., éxito en O(v/N) para busqueda no estructurada) (Childs &
Goldstone, 2004; Grover, 1996). Este eje busca que la xQC no sea un posprocesado aislado,
sino un componente verificable del disefo.

Se advierte una tendencia hacia marcos integrados que combinen atribucion cooperati-
va, analisis espectral/geométrico y lectura operacional del circuito, con el objetivo de ofrecer
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explicaciones consistentes con la fisica subyacente y utiles para decisiones de ingenieria
(eleccion de operadores, tiempos de parada, y criterios de auditoria) (Nielsen & Chuang, 2011;
Portugal, 2018). Bajo esta vision, la explicabilidad deja de ser un agregado ad hoc y pasa a
formar parte del pipeline cuantico, desde el modelado hasta la validacion empirica.

2. Fundamentos tedricos

Con el fin de contextualizar el marco de explicabilidad propuesto, en esta seccién
se presentan los conceptos que sustentan el algoritmo de busqueda en el hipercubo. Se
describen las propiedades del grafo y su relacién con el espacio de Hamming, asi como los
operadores basicos que intervienen en la dinamica de la caminata cuantica: la moneda de
Grover, el operador de desplazamiento flip—flop y el oraculo de fase.

2.1 Interpretabilidad y Explicabilidad en Computacion Cuantica (xQC)

La computacién cuantica promete resolver problemas intratables para los sistemas cla-
sicos, como la simulacién molecular o la optimizacién combinatoria. Sin embargo, enfrenta
desafios técnicos asociados a la coherencia cuantica, la correccion de errores y la comprension
de sus procesos internos. En este contexto, la capacidad de interpretar y explicar los modelos
cuanticos resulta esencial para su adopcién responsable en entornos criticos.

En este marco, la Computacion Cuantica Explicable (xQC) busca dotar de transparencia
a los algoritmos cuanticos, facilitando la identificacion de la contribuciéon de cada componente
a la salida del sistema. A diferencia de la interpretabilidad —que se centra en la comprension
directa de la estructura interna de un modelo—, la explicabilidad emplea herramientas exter-
nas, métricas o visualizaciones para clarificar el comportamiento de sistemas complejos
y probabilisticos. Debido a la naturaleza no determinista de la medicion, existen regiones
del espacio de estados que conforman una banda de inexplicabilidad, donde no es posible
obtener explicaciones completas o deterministas.

2.2 Hipercubo y relacién con el espacio de Hamming
El hipercubo Q, es un grafo regular de grado n, con 2'vértices. Cada vértice puede represen-
tarse como un n-tupla binario:

V=(V,V

YR

L V), V. e{0,1}.

12

Dos vértices estan conectados si difieren en un Unico bit, es decir, si su distancia de
Hamming es uno. Algunas caracteristicas principales son:

Numero de vértices: |V| = 2"

Adyacencia: dos vértices u, v € V estan conectados sid, (u,v) = 1.
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Regularidad: cada vértice tiene exactamente n vecinos, porlo que Q, es un grafo regular
de grado n.

NGmero de aristas: |E| = n 2" 1.

2.3 Matriz de adyacencia y relacién con Hamming
La conectividad del hipercubo puede formalizarse mediante su matriz de adyacencia [,
definida por

I, sidylu,v)=1,
l'4H"|' =

0, en otro caso.

(D

Es decir, A codifica directamente la condicidon de adyacencia basada en la distancia de
Hamming.

En la base computacional, la accién de A sobre un vértice |v) genera todos sus vecinos:
Alv) =Z|V€Bea>, (2)

donde e, es el vector unitario en la dimension a 'y € denota la suma bit a bit modulo 2. Asi,
cada aplicacion de A produce los vértices que se diferencian de v en exactamente un bit.

De este modo, el hipercubo es isomorfo al grafo de Hamming H (n, 2): la métrica d,,
(u, v) mide el nimero de posiciones en las que difieren dos cadenas binarias y, en conse-
cuencia, organiza el grafo en capas de Hamming. Esta estructura permite reducir el analisis
a subespacios simétricos de baja dimension, lo que facilita tanto el estudio espectral como el
disefio de algoritmos de busqueda eficientes (Portugal, 2018).

2.4 Propiedades relevantes del hipercubo para algoritmos de busqueda
cuantica

A continuacion, se identifican las caracteristicas mas relevantes para el analisis y disefio
de SKW (Portugal, 2018):

¢ Alta simetria: permite reducir problemas multidimensionales a espacios de baja
dimension.

e Tiempos de arribo 6ptimos: la caminata cuantica alcanza el vértice marcado en tiempo pro-
porcional a V2", en concordancia con la complejidad de Grover (Childs & Goldstone, 2004).

* Propagacion controlada: la amplitud se concentra progresivamente hacia la capa
que contiene el vértice objetivo.
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¢ Adecuado para busqueda en bases no estructuradas: ofrece un entorno matema-
ticamente claro y fisicamente realizable para implementar algoritmos de busqueda
cuanticos.

2.5 Moneda de Grover

En las caminatas cuanticas acufiadas, uno de los operadores mas utilizados para definir
la dinamica en el espacio de direcciones es la moneda de Grover. Su nombre proviene del
algoritmo de busqueda de Grover (Grover, 1996), donde se introduce un operador de reflexion
respecto del estado uniforme. Este operador se adopta como moneda en caminatas cuanticas.
Se define como:

G = 2D)D.| - I, (3)

donde 1 es la identidad en el espacio de la moneda (de dimension n) y |D_) es el estado
uniforme en todas las direcciones. Sea {|a)}" la base de la moneda; en el hipercubo Q_ el
grado coincide con n, por lo que

1
D = — .
be) Vi @

4)

Para grafos regulares, esta definicion es equivalente a la forma matricial (Portugal, 2018):

-

Gp==Jy- 1y,

n
2

{Gn]ij =S - (sllji (5)

donde I, es la matriz de unos de tamafionxny 6”. es la delta de Kronecker. Esta forma
hace explicito que G es una reflexion respecto del estado uniforme: las entradas fuera de
la diagonal valen 2/n, mientras que la diagonal vale 2/n - 1. En el caso del hipercubo Q_, la
moneda de Grover se combina con el operador shift flip—flop para formar la evolucién global
(véase Sec. 2.7).

2.6 Operador de desplazamiento flip—flop

En las caminatas cuanticas acufiadas, el operador de desplazamiento flip—flop, denotado
S (también llamado flip—flop shift), define la regla de movimiento entre vértices del grafo y
garantiza una evolucion unitaria y reversible. Su accion traslada el estado |a, v) —donde v es
un vértice del hipercubo y a la direccion (dimensién) asociada al bit que se conmuta— hacia
el vértice adyacente en la direccion a, preservando la etiqueta de moneda e invirtiendo la
direccion para el paso siguiente. Formalmente,

Slav) = lav@e,) (6)

donde e es el vector unitario en la direccion a y € denota la suma bit a bit médulo 2.
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En notacién de producto tensorial, S actia como un operador controlado por la moneda
que actualiza exclusivamente el registro de posicion:

§ = ) laYal ® (th'@e..}{vl = ) laXal @ S,
a=1 L a=I1
(7)
donde cada S, conmuta el a-€simo bit de la posicion.

La convencion flip—flop hace que S sea una involucién unitaria:
St=S8 8*=1 ®I,, (8)
donde I es la identidad en el espacio de posiciones (dimension N = 2"). Esta propiedad

asegura reversibilidad y facilita la interferencia constructiva que concentra amplitud en el
vértice objetivo (Portugal, 2018; Shenvi et al., 2003).

2.7 Evolucion global (no marcada y marcada)

De acuerdo con las definiciones de la moneda de Grover (Sec. 2.5) y del operador de
desplazamiento flip—flop (Sec. 2.6), el paso unitario no marcado de la caminata acufiada en
el hipercubo se expresa como:

U = S(GQI), 9)

donde S es el operador de desplazamiento y G la moneda de Grover.

Para transformar esta dinamica en un algoritmo de busqueda, se incorpora un oraculo
que actua sobre el vértice objetivo |t). Este oraculo de fase se define como:

R =1-2|DXD|® |tNt], (10)

y tiene el efecto de invertir la fase unicamente en el estado |D_) ® |t). El paso marcado del
algoritmo resulta entonces:

U = UR = S(GQI)R. 1)
Tras t iteraciones, el estado del sistema es

l$()) = (U) [¥(0)). (12)

Esta combinacion garantiza una evolucion unitaria y balanceada que, en contextos
de busqueda, logra concentrar amplitud en el vértice objetivo (ver complejidad temporal y
expresiones analiticas en Sec. 2.8).
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Para clarificar el funcionamiento del conjunto de operadores en el algoritmo de busque-
da en el hipercubo, se presenta un ejemplo visual (Fig. 1) que integra, en un mismo paso,
al oraculo, la moneda de Grover y el operador flip—flop. En él se observa cémo el vértice
objetivo recibe la fase del oraculo, la moneda de Grover actia como - I en dicho vértice, y
el operador flip—flop distribuye la amplitud hacia los vértices adyacentes (véase Sec. 2.6).

Ur paso comgileto. Moreda de CGenver en we 010 |ja= 2} ¥ keego Shift Mp-hop
ANTES (harras seriranspaneites en G10) - DESPUES (barat silidas en 110, 600 0111 La moneda de Grover G ot und
tramsdonmacdtn local que stio mezcls las n
ACCIONS @ iRl wWirtce, Sin saber quién
5 el target

Deespols die G, o shift 5 usa ik dneccn
[P ey i armpitud por e anstn
corfespondsnte (Mip det ba a)

Oracke: fase n Fourmula compacta

Moneds on v e L = ke 470 | e b
L T Rk R B o T i

| = air
Ordculo de blsqueda (SKWk ups

= Marca el wirtice objeth ve. i
« En w*: usar moneda <1 (fase n),
* En wey™: usar moneda de Grover G.
« Luego aplicar el shift flip-fop 5.

wal Bl w e T+ 000, enps0 50

Figura 1. Ejemplo de un paso del algoritmo SKW en el hipercubo Qn. El vértice marcado v* = 010 recibe la fase
del oraculo (m) ; la moneda de Grover aplica la reflexién I sobre el estado objetivo; y el operador flip—flop trans-
fiere la amplitud hacia los vértices adyacentes. La secuencia completa muestra cémo la combinacién oraculo—
moneda-shift produce interferencia constructiva que concentra la amplitud en el objetivo. (Fuente: elaboracion
propia a partir de (Shenvi et al., 2003)).

2.8 Resumen del modelo SKW y predicciones analiticas

Partiendo del estado inicial uniforme [14(0)) =|DC) |DP), donde |DC) se defini6 enla Sec. 2.5y
|DP)=+/1N "vN=-01|v) es el estado uniforme en posiciones (N = 2n), la evolucion de busqueda se
implementa aplicando los operadores definidos en las Secs. 2.5-2.7. En este marco, la pro-
babilidad de éxito de encontrar el vértice objetivo |t) tras t pasos se aproxima por (Portugal,
2018):

Peuec(l) = :—_sinz( 2 )

VeV
(13)
Con numero optimo de pasos
1 Fis
= [3VeN),

(14)
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Y pico esperado

I'}Ill:lil. =

| =

(15)
En régimen asintético se utiliza ¢ = 2. Para tamanios finitos, puede refinarse con
n o< 1n
T = — — |
€ =55 ; k[k). e = 2C,
(16)

sustituyendo ¢ « ¢, en las Ecs. 13-14 para mejorar el ajuste en n moderados.
El modelo SKW mantiene la complejidad temporal O(VN). Las Ecs. 13-16 proporcionan
referencias analiticas directas para la validacion de las simulaciones.

3. Valores de Shapley

Los valores de Shapley provienen de la teoria de juegos cooperativos y constituyen un
mecanismo de reparto de contribuciones que satisface simultaneamente las propiedades
de eficiencia, simetria, nulidad y aditividad (Shapley, 1953). Este mecanismo garantiza una
asignacion justa y Unica de contribuciones, evita sesgos derivados del orden de incorporacion
de los elementos Young, 1985, y ofrece una interpretacion cuantitativa clara del aporte de
cada componente. En contraste, métodos alternativos como gradientes o heuristicas locales
no aseguran estas propiedades de equidad ni de unicidad (lundberg2017).

3.1 Aplicacion de Hamiltonianos como funcién de valor

Como funciones de valor del juego cooperativo, se emplean observables Hamiltonianos
que permiten medir y descomponer las contribuciones de cada bloque del algoritmo de bus-
queda cuantica (oraculo, moneda y shift) mediante valores de Shapley. Se consideran dos
enfoques principales: el Hamiltoniano del problema y el Hamiltoniano energético.

3.1.1 Hamiltoniano del problema
El Hamiltoniano del problema se define como:

Hprob =" |t) (tl ) (178)
E,o(0 = (YOI Hy, [¥(1)) (17b)
P =10y *, (17¢)

AE (1) = -AP_ (D). (17d)

succ
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Aqui, |t) es el vértice objetivo y |)(t)) el estado tras t iteraciones. En consecuencia, una
disminucién de energia equivale a un incremento de probabilidad, por lo que Hprob funciona
como métrica directa del desempefio en términos de localizacion del objetivo (Portugal, 2018).

3.1.2 Hamiltoniano energético
Este observable incorpora tanto el objetivo marcado como la dindmica global de pro-
pagacion en el grafo (Childs & Goldstone, 2004):
Hg... = —yA = [tt], (18)

donde A es la matriz de adyacencia del hipercubo y y > 0 regula la tasa de salto entre vérti-
ces. Para un estado [y (t)),

E .0 = WOIH, W (0) = -y OIARY ) - Kty (). (19)

A diferencia dermb, aqui la energia no es simplemente el negativo de la probabilidad
de éxito, sino que combina dos efectos complementarios:

* Exploracion: propagacion en la topologia del grafo (término —yA).

¢ Explotacion: sesgo hacia el objetivo (término —|t)(t|, que reduce la energia al aumen-
tar la amplitud en [t)).

3.2 Definicién formal de los valores de Shapley
Sea el conjunto de bloques N = {0, G, S},

correspondiente al oraculo (0), la moneda de Grover (G) y el operador de desplazamiento
flip—flop (S). El circuito fisico mantiene el orden candnico O -G -S; la distincion con el orden
de incorporacion para Shapley se detalla en Sec. 4.4.

El célculo de los valores de Shapley considera a los bloques como jugadores 'y
evalla sus contribuciones marginales bajo diferentes érdenes de incorporacion. Para un
subconjunto C € I la funcién de valor v (C) representa la variacion del observable (pro-
babilidad de éxito o energia) al aplicar unicamente los bloques de C. La contribucion mar-
ginal de i € N a la coalicion C es

Av(i, C) =v(C U {i}) - v(C). (20)

El valor de Shapley de i promedia estas contribuciones sobre todas las permutacio-
nes wde N:

b= D v vt - viep).
| |'JH-H{N]
(21)
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donde C™ denota los bloques que preceden ai en la permutacion . Por construccion,

D, ¢i=vN).

ieN

(22)

3.3 Ejemplo ilustrativo
Para la permutacion “G - O —» S”:

1. Se incorpora G primero, con Oy S actuando como identidades:

[O=1 - [G=G] - [S=1.

2. Luego se afade O, ocupando su casilla candnica en la primera posicion:
[O=0] - [G=G] - [S=1.

3. Finalmente se incorpora S, completando el conjunto:

[0O=0] - [G=G] - [S=S]

Asi, cambia el orden de incorporacion en el calculo, pero no el orden fisico de ejecu-
cion del circuito.

3.4 Signo de las contribuciones

El signo de los valores de Shapley depende del observable elegido como funcién de
valor:

e ConH

o = ~1EX(E], s€ cumple E () =P (t); por tanto, ¢ < O indica un aumento

succ

en la probabilidad de éxito y ¢ > 0 una disminucion.

 Con H__,un ¢ > 0representa un descenso de energia (estado mas alineado con el

ener”

objetivo), mientras que ¢ < 0 refleja un ascenso energético.

4. Metodologia de explicabilidad (SMEF-E)

Sobre la base de los operadores del algoritmo, la definicion de valores de Shapley y los
Hamiltonianos utilizados como funciones de valor (Sec. 3.1), se presenta el marco SMEF-E
(Shapley—Matrix Explainability Framework—Energy). Este enfoque combina teoria de juegos
cooperativos y dinamica cuantica para descomponer y atribuir, de manera justa y cuantitativa,
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la contribucion de cada bloque (véanse Secs. 2.5-2.7) tanto al desempefio global de busqueda
como a la redistribucién energética a lo largo de la evolucion.

41 Flujodel método SMEF-E
1. Seleccion del observable: escoger H, , 0 H__ (definidos en Sec. 3.1) como funcion
de valor para el juego cooperativo.

2. Construccion de coaliciones y valor: generar todos los subconjuntos C < {0, G,
S}y evaluar v (C) segun la definicién formal de la Sec. 3.

3. Calculo de contribuciones: asignar contribuciones marginales y valores de Shapley
¢, (t) conforme a Sec. 3.

4. Interpretacion dinamica: analizar ¢, (t) en cada paso para explicar la cooperacion
de O, G y Sen la concentracién de amplitud y la redistribucion energética.

4.2 Definicion operacional del juego por paso
Sea y, el estado al inicio del paso t. Para cada coalicion C < {O, G, S} se aplican
unicamente los operadores presentes en C, manteniendo identidad en los ausentes y respe-
tando siempre el orden fisico canénico O - G — S. Con este convenio, la funcién de valor
del juego por paso se define como
v(C) = E@W) — E( =),
(23)

OGS
de modo que v(®) = 0y v({0, G, S}) = E(W:) — E(Yy —). La asignacion de

Shapley se calcula promediando sobre las seis permutaciones (o, en |[N|=3, mediante la
forma cerrada), sin alterar el orden fisico del circuito.

4.3 Procedimiento operativo (por paso)
Para cada t en la vecindad del éptimo tedrico (cf. Ec. (14) con Ec. (16)):

1. Evaluar la energia base E (3,) (con H_ .o H_ ).

2. Paralas ocho coaliciones C < {0, G, S}, aplicar solo C (en orden 0 — G — S) y calcular E.
3. Definir v(C) = E@,)-E Y, “ . 24)
4. Calcular ¢, (1), ¢, (t), ¢ (t) (Sec. 3).

5. Verificar la eficiencia por paso (Ec. (27)).

6. Acumular® < @ +¢ (t)y comprobar la eficiencia global (Ec. (29)).

7. Actualizar el estado fisico: ¥, =S G O y,. 25)

t+1
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4.4 Orden fisico vs. orden de incorporacion

El circuito se ejecuta fisicamente como O —» G — Sen todos los pasos (Secs. 2.5-2.7).
En la asignacion de Shapley solo varia el orden de incorporacién para calcular contribuciones
marginales, manteniéndose identidad en los operadores no presentes y sin alterar el orden
fisico del circuito. Véase también Sec. 3 para un ejemplo ilustrativo.

4.5 Ventajas del método SMEF-E

El marco SMEF-E presenta ventajas frente a enfoques centrados solo en complejidad
global o espectro Hamiltoniano (Childs & Goldstone, 2004; Nielsen & Chuang, 2011; Portugal,
2018):

* Descomposicion cuantitativa precisa. Atribuye exactamente la variacion de los
observables (probabilidad o energia) a cada bloque.

* Equidad en laasignacion. Distribucion unica e independiente del orden de aplicacion
(valores de Shapley).

¢ Explicabilidad dinamica. Permite seguir ¢,(t) y detectar momentos criticos de cada
bloque.

¢ Deteccion de anomalias. Patrones andmalos en las contribuciones pueden senalar
oraculos mal definidos o calibraciones inadecuadas de la moneda.

5. Resultados de la simulacion

En esta seccion se presentan los experimentos realizados sobre el algoritmo de busqueda
en el hipercubo basado en caminata cuantica acufiada con moneda de Grover y operador flip—
flop. Primero se valida que la implementacion reproduce el comportamiento tedrico esperado
en términos de tiempo 6ptimo y probabilidad de éxito. Luego, se aplica el marco SMEF-E para
analizar, mediante valores de Shapley, las contribuciones de los tres bloques del algoritmo
durante la evolucion.

5.1 Validacion teérica

Conforme a (Portugal, 2018), el niumero 6ptimo de pasos es el dado en Ec. (14) y la
evolucion de la probabilidad de éxito sigue Ec. (13); en particular, el maximo tedrico esta
caracterizado por Ec. (15).

Para tamafios finitos, se adopta la correccion ¢ — ¢, =~ 2C de Ec. (16).

Para todas las corridas se fijo n € {4, 6, 8}, estado inicial uniforme y objetivo t = 0. Para
visualizar la vecindad del maximo, se simuld hasta T = t' + A (con A pequefio) y se reportd
p. (t) en cada paso junto a la referencia vertical en tteo (Figs. 2—4). Los resultados de las

succ

181



ISSN 2591-5320

UAI Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 169-192

Explainability in Quantum Search Algorithms on Hypercube with ... 182
Pezzini, M. C., Pons, C., & Bibbo, L. M.

Figs. 2 a 4 se sintetizan en la Tabla 1, donde se muestran los parametros tedricos relevantes
para cada caso. En particular, se listan el valor de cn, el numero 6ptimo de iteraciones t*
obtenido de Ec. (14), la probabilidad en dicho punto p(t*°) y la cota superior 1/c_que carac-
teriza el maximo tedrico alcanzable segun Ec. (15).

p_succ(t), n=4, target=0

= _Ec,.: 2.146, ;g;;*:s]

Referencias
= == (b0, £y = 2.146)
e e -]
g F
e B Puadtin)
ﬂ.l Lie
+ BPugcc{L)

0 1 2 3 4 2 L] ) 8 9
t {iteraciones)

Figura 2. Probabilidad de éxito Pt paran = 4, estado inicial uniforme y objetivo t = 0. En azul se muestra la simu-
lacion; en linea punteada rosa, la prediccion tedrica con ¢, = 2,146. La linea vertical naranja marca el 6ptimo tedrico t**° opt
=5, y punto naranja indica P__ (t°) ~ 0,391. La linea gris corresponde a la cota 1/c,,.

suce

CUADRO 1. RESUMEN DE LOS VALORES OPTIMOS DE ITERACIONES Y PROBABILIDAD DE
EXITO EN EL ALGORITMO SKW PARA HIPERCUBOS QyCONN =4,6,8.

n Cn f:;: r {.f:: /ey
4 2146 5 0391 0466
6 2370 10 0387 0422
8 2353 19 04334 0425

5.2 Validacién con el Hamiltoniano del problema

Como control inicial, se verifica que el observable del problema (Sec. 3.1) reproduce la
probabilidad de éxito en el modelo SKW: en las simulaciones se observaE_ (t) ~ - P (t)
(Ec. (17d)) dentro del error numérico. Como referencia tedrica, se incluyen la evolucion de
Ec. (13), el 6ptimo de Ec. (14) y la cota 1/c asociada al maximo de Ec. (15), junto con los

resultados simulados para n € {4, 6, 8} (Figs. 5-7).

Cuando corresponde, se emplea la correccion de tamafio finito de Ec. (16),
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sustituyendo ¢ - ¢. En los experimentos realizados, la relacion £ (t) = -P__(¢) se
cumple con error numeérico despreciable, lo que confirma que H constituye un observable
consistente y adecuado para evaluar el desempeiio del algoritmo en términos de localizacion

del vértice objetivo.
p_succ(t), n=6, target=0

0.5
cn=2.370. tigf=10| I T =
-
0.4 4
Refarencias
n ﬂ.3 = (BN, £ w2, 3T
o -= i
4 ® rudti
= e
0.2 1
=5 Pucelt)
0.1 4
1
1
|
uﬂ T r 1 T T T ¥ o ll T T T L2

i . 4 L] 8 10 12 14
t {iteraciones)

Figura 3. Probabilidad de éxito psucc(t) paran = 6, estado inicial uniforme y objetivo t = 0. En azul se muestra la simulacion;
en linea punteada rosa, la prediccion tedrica con cn = 2,370. La linea vertical naranja marca el dptimo teédrico toptteo =10, y
el punto naranja indica psucc(topt teo) = 0,387. La linea gris corresponde a la cota 1/cn.

5.3 Validacién con el Hamiltoniano energético
Como control adicional, se considera H__ (Sec. 3.1). En las simulaciones, E__(t) corre-
laciona positivamente con P__(t) y alcanza su maximo cerca de t°, en concordancia con las

referencias tedricas de Sec. 2.8 (véanse pies de figura).

5.4 Marco propuesto
La descomposicién por valores de Shapley del observable (Hpmb o H_ ) serealiza por

bloque {0, G, S} en cada iteracién t. En particular,

AE, = E(t)-E(t+1), (26)

t
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se distribuye en ¢ (), ¢ () y ¢ (1), verificando eficiencia por iteracion y eficiencia global
mediante:

2,

¢pll) = AE,,

pEloGE] (27)
T=1
D, = Z'ﬁ'ﬂ[fl
=i (28)
®, = E(ygn) = E(dr).
pe oG5 (29)
p_succ(t), n=8, target=0
1 | plete) = 434
3 €= 2,353, 1N =19 :
0.4 -
Referencias
= 0.3 == (b2, Cs= 2.353)
“ el
EI @ Pudt)
= 8 1ic
w2 T Puell)
0.1 4
0.0 : . . . !

g 3 & o 13 I8
t {iteraciones)

18 21

Figura 4. Probabilidad de éxito psucc(t) para n = 8, estado inicial uniforme y objetivo t = 0. En azul se muestra la simulacion;
en linea punteada rosa, la prediccion teérica con cn = 2,353. La linea vertical naranja marca el dptimo tedrico toptteo= 19,y el
punto naranja indica psucc(topt teo) = 0,434. La linea gris corresponde a la cota 1/cn
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man |l gl & poset]| = B Sleadd

Control con H_prob — n=4, target=0

004 =8 Faaithism =fe) E. plE= ) - GG - mp——
cms | w2146} 1 i
~Benalt] . 0.4
-0.1 =L (E_{proti} ) 7 ¥ =
reve Dunalf] I E
e 1 (g (s} ) - & I
:ﬁ 5 pslt) o -8
E.1
=02
i P
- o
= TR
L)
£ 2
w =03 =
2
0.1 &
(=T
=04 1
ot 18 ; L 0.0
8] Zz 4 6 8
Paso t

Figura 5. Validacion de Hprob para n = 4 (estado inicial uniforme, objetivo t = 0). Se grafican Eprob t y psucc t con referencias
tedricas (cf. Sec. 2.8).

El reparto de contribuciones se calcula preservando el orden fisico de ejecucion (0 - G - S)
y la definicién de los observables; véase la Seccion 3. Las Fig. 11-14 muestran ejemplos
representativos

w0 _pial & popucg || = Sl

Control con H_prob — n=4, target=0

0.0 4 =8 Epallh = =fuut Pt I - O - a———
e S (= VN, €= 2146 : I
~ el _.'-I .‘I o 3 0.4
0.1 =1/e (E_{prot}) I.." - P =
raet Paall] \E
s L (g fsucc}) & i
:ﬁ T pesllh ' f il
-0.2 5
g &
] =
o o2 T
L=
g 3
w =031 =
F
rol £
(=18
=0.4 1
g ; 0.0
] F.4 4 4] &8
Paso t

Figura 6. Validacion de Hprob para n = 6 (configuracion analoga a Fig. 5).
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man| E_prab o p_pecr| « Bolbeei

P =D 434
Control con H_prob — n=8, target=0 -
0.0 1 % Epudi] {m =pouus
- P w10 (SN, w2353} 6.4
~Preslth =
0.1 1 =W (E_{prob)) ] =
T e paalt ! é
- 1k fp_{mucch) : 0.3 E
3 = Pauceit) ; =
W =0.2 1 ; -
o i =
‘é [ 0.2 -
g : 2
“ -031 ; i
- - 0.1 ‘E
: &
- Y ! =0
-0.4 1 X "I---.rh\ L b g
w - 0.0
0 5 10 15 20

Pasot

Figura 7. Validacién de H__, para n = 8 (configuracion anéloga a Fig. 5).

prob

(véanse los pies de figura para n y el objetivo). Estas verificaciones confirman que la
descomposicion de SMEF-E es coherente con la evolucion del observable (conservacion por

paso y total), habilitando un andlisis explicable de “qué bloque hace qué” cerca del 6ptimo
temporal.

nan il _prod & popect | = BodDeedE

Control con H_ener — n=4, target=0

0.0 1 =%= E_ener(t) T L - il
& £ {pron)it) (=p_{mucch) g BT T
0.5 ] == =S (= fch, c. = 2148 O 0.4
=Brnal I} !

§ o -1.0 1 =1ic (E_{prob}) I.-' B
E == p_[succhit] : g'
Ll.rl _1_5 4" Baen(f) s 0.3 E
_g Ve (p_{wee)) ]
al
—2.0 4 1 o
o - 3 2
= : LG
L. - 5 4 ' E
g ’ F:
c —=3.0 1 : o
L i 0.1 g

-3.5 1 E

i

1

~4.0 1 . 0.0
0 2 4 & B
Pasot

(&) y p__(t) con referencias tedricas

prob suce

Figura 8. Validacion con H, paran = 4. Se muestran E_ (t), E



ISSN 2591-5320

Revista Abierta de Informatica Aplicada Vol. 9 N° 1 (diciembre, 2025): 169-192
Explainability in Quantum Search Algorithms on Hypercube with ...

Pezzini, M. C., Pons, C., & Bibbo, L. M.

187

sgulf_prob & potecg] = 0.00pa

Control con H_ener — n=6, target=0

01 =8 Eerent e
& E_{prob}it) (=-p_{succ}) i, T WY sy P W e el Lo
== (w10 [w N, €= 2.370)

=11 —putth _
"E‘ ~1ie (E_{prob} : 3
03 A
S _, | = ptsecin ! =
it T fieee Prest) | £
g e {p_{succ)) ! T
g 4 | 3
|::i : 0.2 o
I.'I.I 1 3
=3 i e
= 4 | =

oh o= E 1
g i 2
il ! 0.1 £

-5 !

]

]

—6 : 0.0
o 2 4 & 8 10 12 14
Paso t

Figura 9. Validacion con H,, . paran = 6 (andloga a Fig. 8).
5.5 Configuracién del experimento

Se empled el marco SMEF-E para descomponer, paso a paso, la variacion del observable
mediante valores de Shapley sobre los tres bloques {O, G, S}. Configuracion:

¢ Tamaio y objetivo. Ejemplos con n € {6, 8}; objetivo t = 0. (Especifico en cada pie
de figura.)

Observables. Hamiltoniano energético H_ y, como control, H .
* Horizonte temporal. Zona “sube—pico—baja” alrededor de t*> = = ¢ N , con
N = 2"y c asintético = 2 o finito ¢, ~ 2C segun (Portugal, 2018).

» Operadores. Oraculo tipo marcado R, moneda de Grover local, y shift flip-flop estan-
dar; esquema de distancia de Hamming linealen H__ .
* Calculo de Shapley. En cada paso t se evalua el observable para todas las coalicio-
nes de {0, G, S} y se promedia sobre las 6 permutaciones, garantizando eficiencia.
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maal§_peob + posucc] = 0Bdesd

Control con H_ener — n=8, target=0

0 { —%= E enar(t) = S i 4
~8 E_{prob}it) (=-p_{succ}) T e il g e 0.4
—1{ == 2 e19 (= WEN, ¢, =2.353) pitth = 0.434 9 '
e g : )
T 2] ~ Ve (E_{prob}) : 3
c == p {zuccht) i 103 o
w| e | Preeslt] : %
s Lic {p_{succ}) | QU
1
E‘: -4 | s
2 : 0232
- i T“_.'
= =51 I E
g | 2
£ —51 i &
w : rol g
]
-7 l
I
i
-5 | 0.0
0 5 10 15 20
Paso t

Figura 10. Validacion con H___ paran = 8 (andloga a Fig. 8).

ener

5.6 Resultadoscon H_

Las Fig. 11y 12 muestran la coherencia de SMEF-E con H_ . En la ventana sombreada,
centrada en t*° (linea discontinua; cf. Ec. (14)), las barras apiladas indican que el oraculo O
domina la variacion AEt definida en Ec. (26), mientras que G y S introducen correcciones
de menor magnitud. La curva gris verifica la conservacion por iteracion de Ec. (27) (desacople
maximo < 107'® en el ejemplo). A nivel global, las contribuciones acumuladas @, en Fig. 12

satisfacen Ec. (29) dentro de la precisién numérica (reportada en el pie de figura).

5.7 Control con H .
Como control ortogonal, se repiti6 SMEF-E con H,, (Fig. 13 y Fig. 14). Se confirma la
conservacion por paso y global. El patron es complementario: G explica el aumentode P,

O no contribuye directamente a esta métrica (es phase flip), y S aporta correcciones menores:
AE =-AP__(t)(cf. Ec. (17d)).

succ
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[arc) s=m | £*217.77 | Floar=17 | neareat=00 | corr{E_aner, p_sstd el wid
-

ﬁ SMEF-E (Hyner). n=8, target=0. Ventana [, £ 4]

a " et — !

2 [ max [T = AE| = 5.55¢-17 :

2 034 :

% I

E ﬂ.: 1
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E o011

=

< 0.0 .

2 : - A,

2 _pa | g

= i e ?HIJ

2‘ 0.2 | R )
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5 : BN G {monedal
& i EEE 5 {shift)

= -0.3 - . : ; . . : I

3 15 16 b 18 19 20 21 2 23

Pasot

Figura 11. SMEF-E con H__: contribuciones por paso alrededor de t*° (cf. Ec. (14)). Ejemplo: n = 8, objetivot = 0. Lalinea
negra es AE, (Ec. (26)); lagris, P ¢ 0 (t) (igualdad de Ec. (27)).
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— Oy (acum.)
== E{gy)=Elpr]=-5.4783
—= 2=l9

1
(]
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t
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[Chequeo global] I8 p = -5.478310 (0_O=-5.8510013, @ Ge=ed.¥86142, § S«-0.004105)
o

Figura 12. SMEF-E con H___ : contribuciones acumuladas o,y verificacion global , P, = EY 3P, (Ec. (29)). Ejemplo
consistente con la Fig. 11.
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SMEF-E con Hpy — n=6, target=0
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Figura 13. SMEF-E con Hpmb: contribuciones por paso,; ejemplo n = 6, objetivo t = 0. Se verifica , P, (t) =AE:con
AE. = -AP_ (0.

§¢¢= Eprob(to) = Egeonlipr)
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Figura 14. SMEF-E con H orob’ contribuciones acumuladas tl)p y chequeo global » (o)
métrica domina G .
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CUADRO 2. Simbolos, definiciones y parametros utilizados en el analisis

Simbolo / formula Definicién / significado

n Nimero de qubits (dimensién del hipercubo / grado de
Q).

N=2" Niimero total de vértices del hipercubo.

V] Cardinalidad del conjunto de vértices (2").

|E| = n2n-! Nimero de aristas del hipercubo.

dy(u,v) Distancia de Hamming: niimero de bits distintos entre
uyv.

A = 1sidg(u,v) = 1: 0en otro caso Matriz de adyacencia de Q,,. Equivalente:
Alv) = E:=| v @ eq).

|De) = # Ty lay Estado uniforme en el registro de moneda.

|Dp) = ﬁ ff:,] vy Estado uniforme en el registro de posicion.

I, Identidad en el subespacio de la moneda (dimension
n).

In Identidad en el espacio de vértices (dimensién N).

G =2|DeKDe| = 1y Moneda de Grover: reflexion respecto del estado
uniforme de moneda.

Sla, vy =la, v e,) Operador shift flip—flop (actia en posicién
preservando la etiqueta de moneda).

U=S(G®ly) Operador global (paso no marcado) de la caminata
cudntica acunada.

R' =1 =2(|DeXDe| @ |1)1]) Ordculo de fase para el vértice objetivo |r}.

Hpeob = =0} (1] Hamiltoniano del problema.

Epon (1) = (W ()| Hpron [ (1)) = = payec(t) Valor esperado de Hyp, ¥ relacion con pc..

Pence (1) = [{tlg ()2 Probabilidad de éxito.

dp(t) Valor de Shapley por paso del bloque p € {0, G, §}.

@, =% (1) Contribucién acumulada del blogue p.

6. Conclusion

En este trabajo se abordé la explicabilidad en algoritmos de busqueda cuantica en el
hipercubo mediante el marco SMEF-E (Shapley-Matrix Explainability Framework — Energy).
A partir de los fundamentos de las caminatas cuanticas y la equivalencia con el algoritmo de
Grover (Nielsen & Chuang, 2011; Portugal, 2018; Shenvi et al., 2003), se demostré que los
valores de Shapley permiten descomponer de manera justa y cuantitativa las contribucio-
nes de los bloques del algoritmo —oraculo, moneda de Grover y shift flip—flop— tanto en la
evolucioén de la probabilidad de éxito como en la dinamica energética.

Los experimentos realizados validaron que la implementacion reproduce el comporta-
miento tedrico esperado: la curva de probabilidad de éxito presenta el patron ascendente—
pico—descendente y el tiempo 6ptimo escala en concordancia con la complejidad de Grover.
Asimismo, se comprobé que SMEF-E satisface la eficiencia local y global, confirmando que
la suma de las contribuciones de Shapley coincide con la variaciéon del observable analizado.

El analisis comparativo con los dos Hamiltonianos aporta una lectura complementaria
de los roles de los blogues. Con el Hamiltoniano del problema (Hprob), la moneda de Grover
domina en la amplificacion de la probabilidad de éxito, mientras que con el Hamiltoniano
energético (Hener) es el oraculo quien concentra el aporte principal, al introducir la marca
de fase que estructura la redistribucién energética. El shift actia de forma mas moderada,
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corrigiendo y sosteniendo la propagacion (Burge & et al., 2024). Esta doble perspectiva
confirma la coherencia del método y enriquece la interpretacion de los mecanismos internos
que sustentan la ventaja cuantica.

Ademas de su valor explicativo, SMEF-E podria emplearse como criterio de auditoria o
diagnostico de anomalias (véase Sec. 4.5), dado que la verificacion de eficiencia por paso y
global habilita chequeos de consistencia. En este sentido, el marco se proyecta no solo como
herramienta de explicabilidad, sino también como criterio de consistencia interna aplicable
en hardware cuantico ruidoso, donde la confiabilidad de la ejecucién constituye un desafio.

SMEF-E integra teoria de juegos y dinamica cuantica, ofreciendo explicabilidad y trans-
parencia en algoritmos de busqueda sobre el hipercubo. La eleccion del hipercubo (SKW)
como caso de estudio se justifica por sus propiedades estructurales y analiticas ya estable-
cidas (Secs. 2-2.8), que habilitan la descomposicién por bloques requerida por SMEF-E y
su validacion en el régimen 0 (VN), sin introducir supuestos adicionales.

Como lineas futuras, se propone extender el andlisis a otros modelos de algoritmos y
evaluar su aplicacion en hardware real con ruido, con el fin de fortalecer la confiabilidad de
la computacion cuantica.
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