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Resumen

Este trabajo analiza la explicabilidad del algoritmo de búsqueda basado en caminatas 
cuánticas acuñadas sobre el hipercubo, integrando la metodología SMEF-E (Shapley–Matrix 
Explainability Framework – Energy). El enfoque combina teoría de juegos cooperativos con 
funciones de valor Hamiltonianas, con el fin de atribuir la contribución funcional y energética 
del oráculo, la moneda de Grover y el operador flip-flop durante la evolución del algoritmo. 
La descomposición mediante valores de Shapley permite interpretar de manera cuantitativa 
cómo se genera la interferencia constructiva y cómo se redistribuye la energía a medida 
que se alcanza la probabilidad de éxito óptima. Los resultados experimentales validan los 
modelos teóricos y aportan transparencia sobre los mecanismos internos que sustentan la 
ventaja cuántica en búsqueda espacial.

PALABRAS CLAVES: caminatas cuánticas; hipercubo; valores de Shapley; explicabili-
dad cuántica; Hamiltonianos; ventaja cuántica.

Abstract

This work explores the explainability of the coined quantum walk search algorithm on the 
hypercube by incorporating the SMEF-E (Shapley–Matrix Explainability Framework – Energy) 
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methodology. In this approach, cooperative game theory is combined with Hamiltonian-based 
value functions to attribute, step by step, the energetic and functional impact of the oracle, 
the Grover coin, and the flip-flop shift. The resulting Shapley value decomposition offers an 
interpretable quantification of operator influence throughout the amplification process, revealing 
how constructive interference emerges and is redistributed as the algorithm approaches its 
optimal success probability. The experimental analysis confirms theoretical predictions while 
providing transparent insights into the mechanisms driving quantum advantage in spatial 
search.

KEYWORDS: quantum explainability; Shapley values; coined quantum walk; hypercube search; 
Hamiltonian-based interpretation; cooperative contribution.

INTRODUCCIÓN

Los avances recientes en Computación Cuántica (QC) han demostrado una evolución 
sostenida en el desarrollo de algoritmos capaces de aprovechar los principios de superposición 
y entrelazamiento para resolver problemas de búsqueda, optimización y simulación con ven-
taja cuántica respecto a los métodos clásicos (Nielsen & Chuang, 2011; Portugal, 2018). Sin 
embargo, esta capacidad conlleva un desafío creciente: la opacidad de los procesos y la 
dificultad para interpretar los resultados obtenidos. La ejecución de un circuito cuántico implica 
la aplicación de operadores unitarios de alta dimensionalidad sobre estados en superposición, 
lo que dificulta determinar el rol individual de cada componente en el resultado final. 

En este contexto surge la Computación Cuántica Explicable (xQC), una extensión con-
ceptual de la Inteligencia Artificial Explicable (XAI) orientada al ámbito cuántico (Childs & 
Goldstone, 2004). El propósito de la xQC es aportar transparencia, trazabilidad y auditabilidad 
a los algoritmos cuánticos, permitiendo comprender cómo cada bloque u operador contribuye 
a la evolución y al resultado global del circuito.

De manera análoga a las técnicas clásicas de explicabilidad —como LIME o SHAP (Grover, 
1996; Shenvi et al., 2003)— la xQC busca atribuir relevancia funcional y energética a los 
componentes de un sistema cuántico, de forma cuantitativa y coherente con la física sub-
yacente. Distintas líneas de investigación recientes abordan esta problemática desde per-
spectivas complementarias. Entre ellas se destacan las explicaciones basadas en valores 
de Shapley aplicadas a redes cuánticas variacionales (SVQX), los enfoques de visualización 
como QuantumEyes, y las redes lógico-explicadas (Logic-Explained Quantum Networks), que 
incorporan principios de lógica formal en la inferencia cuántica (Shapley, 1953; Young, 1985).

No obstante, la mayoría de estos enfoques se centran en modelos híbridos cuánti-
co-clásicos y no consideran la dimensión energética y cooperativa entre los operadores del 
circuito. Para abordar este vacío se propone un marco de análisis denominado Shapley–Matrix 
Explainability Framework – Energy (SMEF-E). El enfoque combina la teoría de juegos cooper-
ativos con la formulación matricial de los circuitos cuánticos, utilizando valores de Shapley para 
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descomponer la contribución energética y funcional de los bloques constitutivos —oráculo, 
moneda y operador shift—.

Organización del artículo. La Sec. 1 presenta los paradigmas del análisis interpreta-
tivo; la Sec. 2 detalla los fundamentos teóricos; las Secs. 2.5 y 2.6 describen los operadores 
básicos; la Sec. 2.7 formaliza la evolución; la Sec. 3 introduce el juego y las funciones de valor 
Hamiltonianas; la Sec. 4 detalla SMEF-E y el juego por paso; y la Sec. 5 reporta validaciones 
y descomposiciones. Los símbolos y fórmulas se recopilan en el Apéndice.

1. Tendencias actuales en explicabilidad cuántica (xQC)

El estudio de la explicabilidad en computación cuántica (xQC) avanza sobre bases teó-
ricas sólidas de la información y del algoritmo cuántico (Nielsen & Chuang, 2011; Portugal, 
2018), y sobre paradigmas de búsqueda que sirven como banco de pruebas para el análi-
sis interpretativo (por ejemplo, Grover y su formulación por caminatas cuánticas) (Childs & 
Goldstone, 2004; Grover, 1996; Shenvi et al., 2003). En este contexto, se observan tendencias 
convergentes orientadas a integrar la transparencia al propio ciclo de diseño y evaluación 
de algoritmos.

Primero, se consolida una línea de atribución funcional que traslada principios de la 
teoría de juegos cooperativos al análisis de circuitos: los valores de Shapley permiten descom-
poner, con criterios de equidad y eficiencia, la contribución de bloques u operadores a un 
objetivo (p. ej., probabilidad de éxito o variación energética) (Shapley, 1953; Young, 1985). 
Esta perspectiva aporta métricas cuantitativas y contrastables para auditar el rol de oráculos, 
monedas y operadores de desplazamiento en algoritmos de búsqueda y optimización.

Segundo, emergen esquemas de explicabilidad estructural que se apoyan en la for-
mulación matricial y en subespacios simétricos para describir la dinámica global de circuitos 
sobre grafos altamente regulares (como el hipercubo), facilitando la lectura de fenómenos de 
interferencia y concentración de amplitud (Childs & Goldstone, 2004; Portugal, 2018). En estos 
modelos, la trazabilidad se beneficia de descomposiciones que relacionan operadores unitarios 
con variaciones observables a lo largo de las iteraciones.

Tercero, se fortalece la evaluación comparativa de explicaciones: sobre la base de 
métricas bien definidas (eficiencia y simetría en atribuciones; complejidad asintótica en bús-
queda), se promueve medir la coherencia entre lo que el algoritmo declara “explicar” y lo que 
efectivamente optimiza (p. ej., éxito en 𝑂(√𝑁) para búsqueda no estructurada) (Childs & 
Goldstone, 2004; Grover, 1996). Este eje busca que la xQC no sea un posprocesado aislado, 
sino un componente verificable del diseño.

Se advierte una tendencia hacia marcos integrados que combinen atribución cooperati-
va, análisis espectral/geométrico y lectura operacional del circuito, con el objetivo de ofrecer 



172
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 169-192
Explainability in Quantum Search Algorithms on Hypercube with ...
Pezzini, M. C., Pons, C., & Bibbó, L. M.

explicaciones consistentes con la física subyacente y útiles para decisiones de ingeniería 
(elección de operadores, tiempos de parada, y criterios de auditoría) (Nielsen & Chuang, 2011; 
Portugal, 2018). Bajo esta visión, la explicabilidad deja de ser un agregado ad hoc y pasa a 
formar parte del pipeline cuántico, desde el modelado hasta la validación empírica.

2. Fundamentos teóricos

Con el fin de contextualizar el marco de explicabilidad propuesto, en esta sección 
se presentan los conceptos que sustentan el algoritmo de búsqueda en el hipercubo. Se 
describen las propiedades del grafo y su relación con el espacio de Hamming, así como los 
operadores básicos que intervienen en la dinámica de la caminata cuántica: la moneda de 
Grover, el operador de desplazamiento flip–flop y el oráculo de fase.

2.1  Interpretabilidad y Explicabilidad en Computación Cuántica (xQC)
La computación cuántica promete resolver problemas intratables para los sistemas clá-

sicos, como la simulación molecular o la optimización combinatoria. Sin embargo, enfrenta 
desafíos técnicos asociados a la coherencia cuántica, la corrección de errores y la comprensión 
de sus procesos internos. En este contexto, la capacidad de interpretar y explicar los modelos 
cuánticos resulta esencial para su adopción responsable en entornos críticos.

En este marco, la Computación Cuántica Explicable (xQC) busca dotar de transparencia 
a los algoritmos cuánticos, facilitando la identificación de la contribución de cada componente 
a la salida del sistema. A diferencia de la interpretabilidad —que se centra en la comprensión 
directa de la estructura interna de un modelo—, la explicabilidad emplea herramientas exter-
nas, métricas o visualizaciones para clarificar el comportamiento de sistemas complejos 
y probabilísticos. Debido a la naturaleza no determinista de la medición, existen regiones 
del espacio de estados que conforman una banda de inexplicabilidad, donde no es posible 
obtener explicaciones completas o deterministas.

2.2  Hipercubo y relación con el espacio de Hamming
El hipercubo Qn es un grafo regular de grado n, con 2n vértices. Cada vértice puede represen-

tarse como un n-tupla binario:

V = (V1, V2, . . . , Vn), V i ∈ {0, 1}.

Dos vértices están conectados si difieren en un único bit, es decir, si su distancia de 
Hamming es uno. Algunas características principales son:

Número de vértices: |V| = 2n.

Adyacencia: dos vértices u, v ∈ V están conectados si dH (u, v) = 1.
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Regularidad: cada vértice tiene exactamente n vecinos, por lo que Qn es un grafo regular 
de grado n.

Número de aristas: |E | = n 2 n−1.

2.3  Matriz de adyacencia y relación con Hamming
La conectividad del hipercubo puede formalizarse mediante su matriz de adyacencia 𝐴, 

definida por 

    		                                                                       (1)

Es decir, A codifica directamente la condición de adyacencia basada en la distancia de 
Hamming.

En la base computacional, la acción de A sobre un vértice |v⟩ genera todos sus vecinos:

 		  					               (2) 
 
 
donde en es el vector unitario en la dimensión a y ⊕ denota la suma bit a bit módulo 2. Así, 
cada aplicación de A produce los vértices que se diferencian de v en exactamente un bit.

De este modo, el hipercubo es isomorfo al grafo de Hamming H (n, 2): la métrica dH 
(u, v) mide el número de posiciones en las que difieren dos cadenas binarias y, en conse-
cuencia, organiza el grafo en capas de Hamming. Esta estructura permite reducir el análisis 
a subespacios simétricos de baja dimensión, lo que facilita tanto el estudio espectral como el 
diseño de algoritmos de búsqueda eficientes (Portugal, 2018).

2.4  Propiedades relevantes del hipercubo para algoritmos de búsqueda 
cuántica

A continuación, se identifican las características más relevantes para el análisis y diseño 
de SKW (Portugal, 2018):

•	 Alta simetría: permite reducir problemas multidimensionales a espacios de baja 
dimensión.

•	 Tiempos de arribo óptimos: la caminata cuántica alcanza el vértice marcado en tiempo pro-
porcional a √2𝑛, en concordancia con la complejidad de Grover (Childs & Goldstone, 2004).

•	 Propagación controlada: la amplitud se concentra progresivamente hacia la capa 
que contiene el vértice objetivo.
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•	 Adecuado para búsqueda en bases no estructuradas: ofrece un entorno matemá-
ticamente claro y físicamente realizable para implementar algoritmos de búsqueda 
cuánticos.

2.5  Moneda de Grover
En las caminatas cuánticas acuñadas, uno de los operadores más utilizados para definir 

la dinámica en el espacio de direcciones es la moneda de Grover. Su nombre proviene del 
algoritmo de búsqueda de Grover (Grover, 1996), donde se introduce un operador de reflexión 
respecto del estado uniforme. Este operador se adopta como moneda en caminatas cuánticas. 
Se define como:

                                            G  =  2 |Dc⟩⟨Dc |  −  In,                                          (3)

donde In es la identidad en el espacio de la moneda (de dimensión n) y |Dc⟩ es el estado 
uniforme en todas las direcciones. Sea {|𝑎⟩}𝑛 la base de la moneda; en el hipercubo 𝑄𝑛 el 
grado coincide con 𝑛, por lo que 

                                                               			   (4)

Para grafos regulares, esta definición es equivalente a la forma matricial (Portugal, 2018):

 				         			   (5)

donde In es la matriz de unos de tamaño n × n y 𝛿i j es la delta de Kronecker. Esta forma 
hace explícito que G es una reflexión respecto del estado uniforme: las entradas fuera de 
la diagonal valen 2/n, mientras que la diagonal vale 2/n − 1. En el caso del hipercubo Qn, la 
moneda de Grover se combina con el operador shift flip–flop para formar la evolución global 
(véase Sec. 2.7).

2.6  Operador de desplazamiento flip–flop
En las caminatas cuánticas acuñadas, el operador de desplazamiento flip–flop, denotado 

𝑆 (también llamado flip–flop shift), define la regla de movimiento entre vértices del grafo y 
garantiza una evolución unitaria y reversible. Su acción traslada el estado |𝑎, 𝑣⟩ —donde 𝑣 es 
un vértice del hipercubo y 𝑎 la dirección (dimensión) asociada al bit que se conmuta— hacia 
el vértice adyacente en la dirección 𝑎, preservando la etiqueta de moneda e invirtiendo la 
dirección para el paso siguiente. Formalmente,

                                                                   𝑆 |𝑎, 𝑣⟩ = |𝑎, 𝑣 ⊕ en⟩,                                                     (6)

donde en es el vector unitario en la dirección 𝑎 y ⊕ denota la suma bit a bit módulo 2.
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En notación de producto tensorial, S actúa como un operador controlado por la moneda 
que actualiza exclusivamente el registro de posición:

 			     	           (7) 
donde cada Sn conmuta el 𝑎-ésimo bit de la posición.

La convención flip–flop hace que S sea una involución unitaria:

                                                     S† = S,  S 2 = In ⊗ IN ,	                                                                  (8) 
 
donde IN es la identidad en el espacio de posiciones (dimensión N = 2n). Esta propiedad 
asegura reversibilidad y facilita la interferencia constructiva que concentra amplitud en el 
vértice objetivo (Portugal, 2018; Shenvi et al., 2003).

2.7  Evolución global (no marcada y marcada)
De acuerdo con las definiciones de la moneda de Grover (Sec. 2.5) y del operador de 

desplazamiento flip–flop (Sec. 2.6), el paso unitario no marcado de la caminata acuñada en 
el hipercubo se expresa como:

                             U = S (G ⊗ IN ),                                                                                (9) 
 
donde S es el operador de desplazamiento y G  la moneda de Grover.

Para transformar esta dinámica en un algoritmo de búsqueda, se incorpora un oráculo 
que actúa sobre el vértice objetivo |t⟩. Este oráculo de fase se define como:

                                    R′ = I − 2
 
|Dc⟩⟨Dc | ⊗ |t⟩⟨t|

 
,                                                          (10)

y tiene el efecto de invertir la fase únicamente en el estado 
 
|Dc⟩ ⊗ |t⟩. El paso marcado del 

algoritmo resulta entonces:

                            U′ = UR′ = S (G ⊗ IN ) R′.                                                        (11)

Tras t iteraciones, el estado del sistema es

                                       |𝜓(𝑡)⟩  =  (𝑈′)𝑡 |𝜓(0)⟩.                                                                         (12)

Esta combinación garantiza una evolución unitaria y balanceada que, en contextos 
de búsqueda, logra concentrar amplitud en el vértice objetivo (ver complejidad temporal y 
expresiones analíticas en Sec. 2.8).
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Para clarificar el funcionamiento del conjunto de operadores en el algoritmo de búsque-
da en el hipercubo, se presenta un ejemplo visual (Fig. 1) que integra, en un mismo paso, 
al oráculo, la moneda de Grover y el operador flip–flop. En él se observa cómo el vértice 
objetivo recibe la fase del oráculo, la moneda de Grover actúa como − I en dicho vértice, y 
el operador flip–flop distribuye la amplitud hacia los vértices adyacentes (véase Sec. 2.6).

Figura 1. Ejemplo de un paso del algoritmo SKW en el hipercubo Qn. El vértice marcado v* = 010 recibe la fase 
del oráculo (𝜋) ; la moneda de Grover aplica la reflexión I sobre el estado objetivo; y el operador flip–flop trans-
fiere la amplitud hacia los vértices adyacentes. La secuencia completa muestra cómo la combinación oráculo–
moneda–shift produce interferencia constructiva que concentra la amplitud en el objetivo. (Fuente: elaboración 
propia a partir de (Shenvi et al., 2003)).

2.8  Resumen del modelo SKW y predicciones analíticas
Partiendo del estado inicial uniforme |𝜓(0)⟩ = |𝐷𝐶⟩ |𝐷𝑃⟩, donde |𝐷𝐶⟩ se definió en la Sec. 2.5 y 

|𝐷𝑃⟩ = √1𝑁 ̋ 𝑣𝑁=-01 |𝑣⟩ es el estado uniforme en posiciones (𝑁 = 2𝑛), la evolución de búsqueda se 
implementa aplicando los operadores definidos en las Secs. 2.5–2.7.  En este marco, la pro-
babilidad de éxito de encontrar el vértice objetivo |t⟩ tras t pasos se aproxima por (Portugal, 
2018):

 		  		                                              (13)

Con número optimo de pasos

 		  		   	                                              (14)
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Y pico esperado

 		   			                                                  (15)

En régimen asintótico se utiliza c ≃ 2. Para tamaños finitos, puede refinarse con

 	
	

 	
                                                     (16) 
 
sustituyendo 𝑐 ← 𝑐𝑛 en las Ecs. 13–14 para mejorar el ajuste en n moderados. 
El modelo SKW mantiene la complejidad temporal 𝑂(√𝑁). Las Ecs. 13–16 proporcionan 
referencias analíticas directas para la validación de las simulaciones.

3. Valores de Shapley

Los valores de Shapley provienen de la teoría de juegos cooperativos y constituyen un 
mecanismo de reparto de contribuciones que satisface simultáneamente las propiedades 
de eficiencia, simetría, nulidad y aditividad (Shapley, 1953). Este mecanismo garantiza una 
asignación justa y única de contribuciones, evita sesgos derivados del orden de incorporación 
de los elementos Young, 1985, y ofrece una interpretación cuantitativa clara del aporte de 
cada componente. En contraste, métodos alternativos como gradientes o heurísticas locales 
no aseguran estas propiedades de equidad ni de unicidad (lundberg2017).

3.1   Aplicación de Hamiltonianos como función de valor
Como funciones de valor del juego cooperativo, se emplean observables Hamiltonianos 

que permiten medir y descomponer las contribuciones de cada bloque del algoritmo de bús-
queda cuántica (oráculo, moneda y shift) mediante valores de Shapley. Se consideran dos 
enfoques principales: el Hamiltoniano del problema y el Hamiltoniano energético.

3.1.1   Hamiltoniano del problema
El Hamiltoniano del problema se define como:

                                 Hprob = − |t⟩ ⟨t| ,					           (17a)

                                Eprob(t) = ⟨𝜓(t) | Hprob |𝜓(t)⟩ ,                                                                     (17b)

                            Psucc(t)  =  | ⟨t⟩ 𝜓(t) | 2 ,					              (17c)

                                  ΔEprob(t) = − ΔPsucc(t).					            (17d)
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Aquí, |t⟩ es el vértice objetivo y |𝜓(t)⟩ el estado tras t iteraciones. En consecuencia, una 
disminución de energía equivale a un incremento de probabilidad, por lo que Hprob funciona 
como métrica directa del desempeño en términos de localización del objetivo (Portugal, 2018).

3.1.2   Hamiltoniano energético
Este observable incorpora tanto el objetivo marcado como la dinámica global de pro-

pagación en el grafo (Childs & Goldstone, 2004):

                              Hener = −yA − |t⟩⟨t|,                                                                                   (18)
 

donde 𝐴 es la matriz de adyacencia del hipercubo y 𝛾 > 0 regula la tasa de salto entre vérti-
ces. Para un estado |𝜓(𝑡)⟩,

                   𝐸ener(𝑡) = ⟨𝜓 (𝑡) |𝐻ener|𝜓 (𝑡)⟩ = −𝛾⟨𝜓 (𝑡) | 𝐴 |𝜓 (𝑡)⟩ − |⟨𝑡 |𝜓 (𝑡)⟩ |2.		          (19) 

A diferencia deHprob, aquí la energía no es simplemente el negativo de la probabilidad 
de éxito, sino que combina dos efectos complementarios:

•	 Exploración: propagación en la topología del grafo (término −yA).

•	 Explotación: sesgo hacia el objetivo (término −|t⟩⟨t |, que reduce la energía al aumen-
tar la amplitud en |t⟩).

3.2  Definición formal de los valores de Shapley
Sea el conjunto de bloques  𝑁 = {𝑂, 𝐺, 𝑆}, 

 
correspondiente al oráculo (O), la moneda de Grover (G) y el operador de desplazamiento 
flip–flop (S). El circuito físico mantiene el orden canónico O ·G ·S; la distinción con el orden 
de incorporación para Shapley se detalla en Sec. 4.4.

El cálculo de los valores de Shapley considera a los bloques como jugadores y 
evalúa sus contribuciones marginales bajo diferentes órdenes de incorporación. Para un 
subconjunto C ⊆  𝑁,N la función de valor v (C) representa la variación del observable (pro-
babilidad de éxito o energía) al aplicar únicamente los bloques de C. La contribución mar-
ginal de i ∈ N a la coalición C es

                                                Δv(i, C) = v (C ∪ {i}) − v (C).                                                      (20) 

 El valor de Shapley de i promedia estas contribuciones sobre todas las permutacio-
nes 𝜋 de N:	  

 	                                     	          (21)
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donde 𝐶 𝜋 denota los bloques que preceden a 𝑖 en la permutación 𝜋. Por construcción,

 			   					      (22)

3.3  Ejemplo ilustrativo
Para la permutación “G → O → S”:

1.  Se incorpora G primero, con O y S actuando como identidades:

[O = I]  −  [G = G]  −  [S = I]. 

2.  Luego se añade O, ocupando su casilla canónica en la primera posición:

[O = O]  −  [G = G]  −  [S = I]. 

3.  Finalmente se incorpora S, completando el conjunto:

[O = O]  −  [G = G]  −  [S = S]. 

Así, cambia el orden de incorporación en el cálculo, pero no el orden físico de ejecu-
ción del circuito.

3.4   Signo de las contribuciones
El signo de los valores de Shapley depende del observable elegido como función de 

valor:

•	 Con Hprob = −|t⟩⟨t |, se cumple Eprob(t) = −Psucc(t); por tanto, 𝜙 < 0 indica un aumento 
en la probabilidad de éxito y 𝜙 > 0 una disminución.

•	 Con Hener, un 𝜙 > 0 representa un descenso de energía (estado más alineado con el 
objetivo), mientras que 𝜙 < 0 refleja un ascenso energético.

4.  Metodología de explicabilidad (SMEF-E)

Sobre la base de los operadores del algoritmo, la definición de valores de Shapley y los 
Hamiltonianos utilizados como funciones de valor (Sec. 3.1), se presenta el marco SMEF-E 
(Shapley–Matrix Explainability Framework–Energy). Este enfoque combina teoría de juegos 
cooperativos y dinámica cuántica para descomponer y atribuir, de manera justa y cuantitativa, 

𝑖
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la contribución de cada bloque (véanse Secs. 2.5–2.7) tanto al desempeño global de búsqueda 
como a la redistribución energética a lo largo de la evolución.

4.1   Flujo del método SMEF-E
1.	 Selección del observable: escoger Hprob o Hener (definidos en Sec. 3.1) como función 

de valor para el juego cooperativo.

2.	 Construcción de coaliciones y valor: generar todos los subconjuntos 𝐶 ⊆ {𝑂, 𝐺, 
𝑆} y evaluar 𝑣 (𝐶) según la definición formal de la Sec. 3.

3.	 Cálculo de contribuciones: asignar contribuciones marginales y valores de Shapley 
𝜙𝑖 (𝑡) conforme a Sec. 3.

4.	 Interpretación dinámica: analizar 𝜙𝑖 (𝑡) en cada paso para explicar la cooperación 
de 𝑂, 𝐺 y 𝑆 en la concentración de amplitud y la redistribución energética.

4.2  Definición operacional del juego por paso
Sea 𝜓t el estado al inicio del paso t. Para cada coalición C ⊆ {O, G, S} se aplican 

únicamente los operadores presentes en C, manteniendo identidad en los ausentes y respe-
tando siempre el orden físico canónico O → G → S. Con este convenio, la función de valor 
del juego por paso se define como

                                                                                   (23)

de modo que 𝑣 (∅) = 0 y 𝑣 ({𝑂, 𝐺, 𝑆}) =  La asignación de 
Shapley se calcula promediando sobre las seis permutaciones (o, en |𝑁|=3, mediante la 
forma cerrada), sin alterar el orden físico del circuito.

4.3  Procedimiento operativo (por paso)
Para cada t en la vecindad del óptimo teórico (cf. Ec. (14) con Ec. (16)):

1.	 Evaluar la energía base 𝐸 (𝜓𝑡 ) (con 𝐻prob o 𝐻ener).

2.	 Para las ocho coaliciones 𝐶 ⊆ {𝑂, 𝐺, 𝑆}, aplicar solo 𝐶 (en orden 𝑂 → 𝐺 → 𝑆) y calcular 𝐸.

3.	 Definir  𝑣 (𝐶) = 𝐸 (𝜓𝑡 ) − 𝐸
 
𝜓𝑡 −→𝐶

  
.	                                                                 (24)

4.	 Calcular 𝜙𝑂 (𝑡), 𝜙𝐺 (𝑡), 𝜙𝑆 (𝑡) (Sec. 3).

5.	 Verificar la eficiencia por paso (Ec. (27)).

6.	 Acumular Φ𝑝 ← Φ𝑝 + 𝜙𝑝 (𝑡) y comprobar la eficiencia global (Ec. (29)).

7.	 Actualizar el estado físico:  𝜓𝑡+1 = 𝑆 𝐺 𝑂 𝜓𝑡 .				    (25)
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4.4  Orden físico vs. orden de incorporación
El circuito se ejecuta físicamente como O → G → S en todos los pasos (Secs. 2.5–2.7). 

En la asignación de Shapley solo varía el orden de incorporación para calcular contribuciones 
marginales, manteniéndose identidad en los operadores no presentes y sin alterar el orden 
físico del circuito. Véase también Sec. 3 para un ejemplo ilustrativo.

4.5  Ventajas del método SMEF-E
El marco SMEF-E presenta ventajas frente a enfoques centrados solo en complejidad 

global o espectro Hamiltoniano (Childs & Goldstone, 2004; Nielsen & Chuang, 2011; Portugal, 
2018):

•	 Descomposición cuantitativa precisa. Atribuye exactamente la variación de los 
observables (probabilidad o energía) a cada bloque.

•	 Equidad en la asignación. Distribución única e independiente del orden de aplicación 
(valores de Shapley).

•	 Explicabilidad dinámica. Permite seguir 𝜙i (t) y detectar momentos críticos de cada 
bloque.

•	 Detección de anomalías. Patrones anómalos en las contribuciones pueden señalar 
oráculos mal definidos o calibraciones inadecuadas de la moneda.

5.  Resultados de la simulación

En esta sección se presentan los experimentos realizados sobre el algoritmo de búsqueda 
en el hipercubo basado en caminata cuántica acuñada con moneda de Grover y operador flip–
flop. Primero se valida que la implementación reproduce el comportamiento teórico esperado 
en términos de tiempo óptimo y probabilidad de éxito. Luego, se aplica el marco SMEF-E para 
analizar, mediante valores de Shapley, las contribuciones de los tres bloques del algoritmo 
durante la evolución.

5.1  Validación teórica
Conforme a (Portugal, 2018), el número óptimo de pasos es el dado en Ec. (14) y la 

evolución de la probabilidad de éxito sigue Ec. (13); en particular, el máximo teórico está 
caracterizado por Ec. (15).

Para tamaños finitos, se adopta la corrección c → cn ≃ 2C de Ec. (16).

Para todas las corridas se fijó 𝑛 ∈ {4, 6, 8}, estado inicial uniforme y objetivo 𝑡 = 0. Para 
visualizar la vecindad del máximo, se simuló hasta 𝑇 = 𝑡teo + Δ (con Δ pequeño) y se reportó 
𝑝succ(𝑡) en cada paso junto a la referencia vertical en 𝑡teo (Figs. 2–4). Los resultados de las 
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Figs. 2 a 4 se sintetizan en la Tabla 1, donde se muestran los parámetros teóricos relevantes 
para cada caso. En particular, se listan el valor de 𝑐𝑛, el número óptimo de iteraciones 𝑡teo 
obtenido de Ec. (14), la probabilidad en dicho punto 𝑝(𝑡teo) y la cota superior 1/𝑐𝑛 que carac-
teriza el máximo teórico alcanzable según Ec. (15).

Figura 2. Probabilidad de éxito Psucc t para n = 4, estado inicial uniforme y objetivo t = 0. En azul se muestra la simu-
lación; en línea punteada rosa, la predicción teórica con cn = 2,146. La línea vertical naranja marca el óptimo teórico tteo 
= 5, y punto naranja indica Psucc (tteo) ≈ 0,391. La línea gris corresponde a la cota 1/cn.

CUADRO 1. RESUMEN DE LOS VALORES ÓPTIMOS DE ITERACIONES Y PROBABILIDAD DE 
ÉXITO EN EL ALGORITMO SKW PARA HIPERCUBOS QN CON N = 4, 6, 8.

5.2  Validación con el Hamiltoniano del problema
Como control inicial, se verifica que el observable del problema (Sec. 3.1) reproduce la 

probabilidad de éxito en el modelo SKW: en las simulaciones se observa Eprob(t) ≈ − Psucc(t) 
(Ec. (17d)) dentro del error numérico. Como referencia teórica, se incluyen la evolución de 
Ec. (13), el óptimo de Ec. (14) y la cota 1/c asociada al máximo de Ec. (15), junto con los 
resultados simulados para n ∈ {4, 6, 8} (Figs. 5–7).

Cuando corresponde, se emplea la corrección de tamaño finito de Ec. (16), 

opt
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sustituyendo c → cn. En los experimentos realizados, la relación Eprob(t) = −Psucc(t) se 
cumple con error numérico despreciable, lo que confirma que Hprob constituye un observable 
consistente y adecuado para evaluar el desempeño del algoritmo en términos de localización 
del vértice objetivo.

 

Figura 3. Probabilidad de éxito 𝑝succ(𝑡) para 𝑛 = 6, estado inicial uniforme y objetivo 𝑡 = 0. En azul se muestra la simulación; 
en línea punteada rosa, la predicción teórica con 𝑐𝑛 = 2,370. La línea vertical naranja marca el óptimo teórico 𝑡opt teo = 10, y 
el punto naranja indica 𝑝succ(𝑡opt teo) ≈ 0,387. La línea gris corresponde a la cota 1/𝑐𝑛.

5.3  Validación con el Hamiltoniano energético
Como control adicional, se considera Hener (Sec. 3.1). En las simulaciones, Eener(t) corre-

laciona positivamente con Psucc(t) y alcanza su máximo cerca de tteo, en concordancia con las 
referencias teóricas de Sec. 2.8 (véanse pies de figura).

5.4  Marco propuesto
La descomposición por valores de Shapley del observable (𝐻prob o 𝐻ener) se realiza por 

bloque {𝑂, 𝐺, 𝑆} en cada iteración 𝑡. En particular,

                                                        ΔEt = E(t) − E(t + 1),                                                           (26)
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se distribuye en 𝜙O (t), 𝜙G (t) y 𝜙S (t), verificando eficiencia por iteración y eficiencia global 
mediante:

                                       			   (27)

                                       				    (28)

                                 		  (29)

	

Figura 4. Probabilidad de éxito 𝑝succ(𝑡) para 𝑛 = 8, estado inicial uniforme y objetivo 𝑡 = 0. En azul se muestra la simulación; 
en línea punteada rosa, la predicción teórica con 𝑐𝑛 = 2,353. La línea vertical naranja marca el óptimo teórico 𝑡opt teo = 19, y el 
punto naranja indica 𝑝succ(𝑡opt teo) ≈ 0,434. La línea gris corresponde a la cota 1/𝑐𝑛 
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Figura 5. Validación de 𝐻prob para 𝑛 = 4 (estado inicial uniforme, objetivo 𝑡 = 0). Se grafican 𝐸prob 𝑡 y 𝑝succ 𝑡 con referencias 
teóricas (cf. Sec. 2.8).

El reparto de contribuciones se calcula preservando el orden físico de ejecución (𝑂 · 𝐺 · 𝑆) 
y la definición de los observables; véase la Sección 3. Las Fig. 11–14 muestran ejemplos 
representativos

 

Figura 6. Validación de 𝐻prob para n = 6 (configuración análoga a Fig. 5).
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Figura 7. Validación de 𝐻prob para 𝑛 = 8 (configuración análoga a Fig. 5).

(véanse los pies de figura para 𝑛 y el objetivo). Estas verificaciones confirman que la 
descomposición de SMEF-E es coherente con la evolución del observable (conservación por 
paso y total), habilitando un análisis explicable de “qué bloque hace qué” cerca del óptimo 
temporal.

Figura 8. Validación con 𝐻ener para 𝑛 = 4. Se muestran 𝐸ener (𝑡), 𝐸prob (𝑡) y 𝑝succ (𝑡) con referencias teóricas
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Figura 9. Validación con 𝐻ener para 𝑛 = 6 (análoga a Fig. 8).

5.5  Configuración del experimento
Se empleó el marco SMEF-E para descomponer, paso a paso, la variación del observable 

mediante valores de Shapley sobre los tres bloques {O, G, S}. Configuración:

•	 Tamaño y objetivo. Ejemplos con n ∈ {6, 8}; objetivo t = 0. (Específico en cada pie 
de figura.)

•	 Observables. Hamiltoniano energético Hener y, como control, Hprob.

•	 Horizonte temporal. Zona “sube–pico–baja” alrededor de 𝑡teo =
  𝜋 √𝑐 𝑁

 
, con  

𝑁 = 2𝑛 y 𝑐  asintótico ≃ 2 o finito 𝑐𝑛 ≃ 2𝐶 según (Portugal, 2018).

•	 Operadores. Oráculo tipo marcado R′, moneda de Grover local, y shift flip-flop están-
dar; esquema de distancia de Hamming lineal en Hener.

•	 Cálculo de Shapley. En cada paso t se evalúa el observable para todas las coalicio-
nes de {𝑂, 𝐺, 𝑆} y se promedia sobre las 6 permutaciones, garantizando eficiencia.
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Figura 10. Validación con 𝐻ener para 𝑛 = 8 (análoga a Fig. 8).

5.6  Resultados con 𝐻ener
Las Fig. 11 y 12 muestran la coherencia de SMEF-E con Hener. En la ventana sombreada, 

centrada en tteo (línea discontinua; cf. Ec. (14)), las barras apiladas indican que el oráculo O 
domina la variación ΔEt definida en Ec. (26), mientras que G y S introducen correcciones 
de menor magnitud. La curva gris verifica la conservación por iteración de Ec. (27) (desacople 
máximo < 10−16 en el ejemplo). A nivel global, las contribuciones acumuladas Φp en Fig. 12 
satisfacen Ec. (29) dentro de la precisión numérica (reportada en el pie de figura).

5.7  Control con 𝐻prob
Como control ortogonal, se repitió SMEF-E con Hprob (Fig. 13 y Fig. 14). Se confirma la 

conservación  por paso y global. El patrón es complementario: G explica el aumento de Psucc, 
O no contribuye directamente a esta métrica (es phase flip), y S aporta correcciones menores: 
ΔEt = −ΔPsucc(t) (cf. Ec. (17d)).
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Figura 11. SMEF-E con Hener: contribuciones por paso alrededor de tteo (cf. Ec. (14)). Ejemplo: n = 8, objetivo t = 0. La línea  
negra es ΔEt (Ec. (26)); la gris, 

.
P 𝜙p (t) (igualdad de Ec. (27)).

Figura 12. SMEF-E con Hener: contribuciones acumuladas Φ𝑝 y verificación global 𝑝 Φ𝑝 = E𝜓0 𝐸  𝜓𝑇   (Ec. (29)). Ejemplo 
consistente con la Fig. 11.



190
ISSN 2591-5320  
Revista Abierta de Informática Aplicada Vol. 9 Nº 1 (diciembre, 2025): 169-192
Explainability in Quantum Search Algorithms on Hypercube with ...
Pezzini, M. C., Pons, C., & Bibbó, L. M.

Figura 13. SMEF-E con Hprob: contribuciones por paso; ejemplo n = 6, objetivo t = 0. Se verifica 𝑝 Φ𝑝 (t)  ≈ ΔEt con 
ΔEt = −ΔPsucc (t).

Figura 14. SMEF-E con 𝐻prob: contribuciones acumuladas Φ𝑝 y chequeo global 𝑝 Φ𝑝 = 𝐸prob 𝜓0	 𝐸prob 𝜓𝑇 . En esta 
métrica domina 𝐺.

.
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CUADRO 2. Símbolos, definiciones y parámetros utilizados en el análisis

6.  Conclusión

En este trabajo se abordó la explicabilidad en algoritmos de búsqueda cuántica en el 
hipercubo mediante el marco SMEF-E (Shapley-Matrix Explainability Framework – Energy). 
A partir de los fundamentos de las caminatas cuánticas y la equivalencia con el algoritmo de 
Grover (Nielsen & Chuang, 2011; Portugal, 2018; Shenvi et al., 2003), se demostró que los 
valores de Shapley permiten descomponer de manera justa y cuantitativa las contribucio-
nes de los bloques del algoritmo —oráculo, moneda de Grover y shift flip–flop— tanto en la 
evolución de la probabilidad de éxito como en la dinámica energética.

Los experimentos realizados validaron que la implementación reproduce el comporta-
miento teórico esperado: la curva de probabilidad de éxito presenta el patrón ascendente–
pico–descendente y el tiempo óptimo escala en concordancia con la complejidad de Grover. 
Asimismo, se comprobó que SMEF-E satisface la eficiencia local y global, confirmando que 
la suma de las contribuciones de Shapley coincide con la variación del observable analizado.

El análisis comparativo con los dos Hamiltonianos aporta una lectura complementaria 
de los roles de los bloques. Con el Hamiltoniano del problema (𝐻prob), la moneda de Grover 
domina en la amplificación de la probabilidad de éxito, mientras que con el Hamiltoniano 
energético (𝐻ener) es el oráculo quien concentra el aporte principal, al introducir la marca 
de fase que estructura la redistribución energética. El shift actúa de forma más moderada, 
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corrigiendo y sosteniendo la propagación (Burge & et al., 2024). Esta doble perspectiva 
confirma la coherencia del método y enriquece la interpretación de los mecanismos internos 
que sustentan la ventaja cuántica.

Además de su valor explicativo, SMEF-E podría emplearse como criterio de auditoría o 
diagnóstico de anomalías (véase Sec. 4.5), dado que la verificación de eficiencia por paso y 
global habilita chequeos de consistencia. En este sentido, el marco se proyecta no solo como 
herramienta de explicabilidad, sino también como criterio de consistencia interna aplicable 
en hardware cuántico ruidoso, donde la confiabilidad de la ejecución constituye un desafío.

SMEF-E integra teoría de juegos y dinámica cuántica, ofreciendo explicabilidad y trans-
parencia en algoritmos de búsqueda sobre el hipercubo. La elección del hipercubo (SKW) 
como caso de estudio se justifica por sus propiedades estructurales y analíticas ya estable-
cidas (Secs. 2–2.8), que habilitan la descomposición por bloques requerida por SMEF-E y 
su validación en el régimen 𝑂 (√𝑁), sin introducir supuestos adicionales.

Como líneas futuras, se propone extender el análisis a otros modelos de algoritmos y 
evaluar su aplicación en hardware real con ruido, con el fin de fortalecer la confiabilidad de 
la computación cuántica.
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